EASE Lab

Cloud Resources Management

Dmitrii Ustiugov
PhD candidate, the University of Edinburgh

Dmitrii Ustiugov

08.11.2021, Extreme Computing course at the University of Edinburgh

In The Previous Episodes

You've learned a lot about distributed systems and frameworks

e Large-scale parallel computations
e Big data processing & management

EASE Lab

This lecture: Cloud computing & cloud resources management

Dmitrii Ustiugov -

e A gigantic computer rental for clients (businesses) ‘
e Cloud-scale OS, key components, technologies,
resources management

The Cloud Servers Era

Pay a cloud provider for Infrastructure-as-a-Service (laaS)

D aws

Google Cloud Platform

ml Vicrosoft
Ml Azure

e Rental instead of acquisition
e Examples: AWS EC2, Microsoft Azure

EASE Lab

Provider is responsible for acquiring & maintaining the computers

Dmitrii Ustiugov -

Client manages the “cloud” infrastructure

e E.g., decides when to rent more/fewer computers
e Pay-for-what-you-use model (evolving all the time)

Requirements for Running Cloud Services (Client side)

High availability

e Low response time
e Data durability

EASE Lab

Resources scaling

e Adjust to dynamic traffic changes

Dmitrii Ustiugov

Security

e |solation across services
e Isolation between services and the provider

Datacenters

Large scale

% e 10s of thousands of compute nodes
Provider-managed

3

§ e Power supply & cooling

5 e Hardware and software upgrades

£

@]

Geographically distributed

e Clients rent resources around the globe

G

oogle’s datacenter campu

S

Inside a Datacenter

Collection of cheap and standard components

e Racks of compute and storage nodes
e Network

EASE Lab

Providers manages the bare-metal infrastructure

Dmitrii Ustiugov

e Power and cooling
e Software and hardware infrastructure upgrades

L SeCU rlty Adopted from John Wilkes, Google

Client View

Clients submit compute tasks

% e Job

§ o E.g., financial report generation

4w e Interactive service

' o E.g., aweb form, social networks

>

S

3 Clients list resource requirements per task
£ . .

o e Ifinteractive, for how long to run?

e Software: OS type, language runtime, ...

job hello_world = {

runtime = { cell = 'ic' } // Cell (cluster) to run in
binary = '.../hello_world_webserver' // Program to run
args = { port = '%port%' } // Command line parameters
requirements = { // Resource requirements (optional)

ram = 100M

disk = 100M

cpu = 0.1
}

replicas = 10000 // Number of tasks

Adopted from John Wilkes, Google

e Hardware: CPU, memory, disk, network speed, ...

Provider View

Millions of compute tasks to schedule per day

3 Mary’s report

% generation

) website § =
Challenges P e

5

5 e All client-side requirements:

2 o High availability, fault tolerance,

@]

scaling, security, ...

e How to minimize a provider’s costs

o Utilize all resources efficiently
o Power off everything not in use

Adopted from John Wilkes, Google

Cluster Scheduling with Kubernetes (k8s) 2® Cient deploys, monicors
“ J and manages services

Control plane (master node) l X e
s’,’.\ Master node e
o e Centralized scheduler ...
w e Highly available Traffic [Scheduler } Cluster
<
H . (e.g., clicks) metadata
Services (i.e., the apps) |-
3 . . Worker node | ,,/"/ Worker' |‘|ode 2 "~~~Worker node N
@ Pods (instances of a service) — N
g [Kubelet || || Kubelet) [Kubelet |
= e Units of scheduling
5 e Units of scaling
[Front-end (ingress) podk\L Other pod] [Other pod]
\
Worker nodes (otherpod |\ |[otherpo~]| ... | Otherpod |
° Hosts for pods [Other pod] [Other pod] \.[App pod 2] kubernetes
e Per-worker kubelet manages pods [Otherpod | t Apppod1 | [Otherpod |
[Other pod] [Other pod] [Other pod]

EASE Lab

Dmitrii Ustiugov -

Co-location at Google with Borg (k8s predecessor)

Tight packing of jobs on each node

s ;,.F =r|'r 04

II l
Minimize stranded resources

120 : .I i !I ! | i | ||
e Nodes with free memory but g il || - _
no free cores =" i il
§ [] 'l . I'
£ |] !l il !
E 40 L I A
Continuous cluster nodes monitoring |) i |l||| | i i I I|II” “

e Resource reclamation . one stranded resources
vailable r r ;
e Health checks per node & pod available resources machine

3 | I
8 20- g
Minimize the number of underutilized nodes ?, ||!!| i
g‘°'|||I|
]

J'“lll'llllllm

10

EASE Lab

Dmitrii Ustiugov -

Q&A: Datacenter

11

Datacenter Resources Rental Challenges

What is the rental granularity and for how long?

100% g cresesnesrrrossorsore s oo
80%
60%
40%f
20%

e Renting entire bare-metal nodes is too expensive % 10 20 @ 40 5 6 70 8 90 100
o Many compute tasks are too small or short tasks per machine
CPI*2 (Google, 2013)

e Renting for days is wasteful
o E.g., need more resources during the day, less at night

EASE Lab
CDF

Dmitrii Ustiugov

Co-locating compute tasks seems natural, but:

e How? Is it secure? Is it possible to satisfy all client requirements?

“Careful” co-location of compute tasks is necessary 12

Requirements

Client side / Provider side \

§ High availability High resource utilization l
§ kubernetes
: E‘;‘i‘;rgjf;gﬁf’ time e Nodes either in use or powered off
g Y e Aggressive co-location of jobs
o
2 Resources scaling @
3 Minimal infrastructure overhead ¢
E e Adjust to dynamic traffic changes
& e Performance & memory
Security @
Security ¢
e Isolation across jobs

e Isolation between a job and the provider \o\lsolation across clients, clients and providy

13

Isolation Technologies

EASE Lab

towoenead () s seoty

Processes @ Virtual machines

O

Dmitrii Ustiugov -

|s there a solution that combines both?

14

EASE Lab

Dmitrii Ustiugov

Isolation Spectrum Extremes

Processes

Virtual machines

Application

Application

Application

App | App | App | App | App

App

Libs & drivers

Libs & drivers

Libs & drivers

Libs & drivers

Guest OS

Guest OS

Guest OS

Host OS

Host OS / Hypervisor

Hardware (CPU, memory, disks)

Low overhead
Vast attack surface

e Shared host OS kernel, CPU, NICs, disks
e May crash the host OS (the blue screen of death)

Hardware (CPU, memory, disks)

High degree of isolation
High overhead

None of the two extremes suffice

15

The Two Roads towards a “Perfect” Isolation Technology

Make process isolation stronger Make VMs leaner
§ Namespace abstractions Is guest OS necessary?
<
e \Virtualize the process tree e “Double” memory allocation in host & guest
. & Virtualize the network e “Double” scheduling in host & guest
gj’ e \irtualize the filesystem (“chroot”) °
3
E
Filter system calls to the host kernel Need to emulate all possible devices?

e Which syscalls? With which arguments? e FE.g.,isa 10-years old NIC still relevant?

16

Containers: Towards Secure Processes

Originated from Linux cgroups & namespaces, zones in Solaris OS, etc.

Container Container Container
3
w | Application Application Application A container is a combination of technologies:
!
' Libs & drivers Libs & drivers Libs & drivers o Namespaces:
S o Isolated PID tree: All processes forked from container’s private PID 1
go CErE T CErETET CEriETET o Virtual networ!(: Each container has its own IP address
= runtime runtime runtime o Isolated root filesystem
> e Resource groups (e.g., Linux cgroups)
E Host OS o E.g., limiting CPU quota and physical memory allocation
0
TECITER (EIE, METe? €eie) Docker revolution through automation

e Easy building & deploying using existing technologies
e AppArmor for syscall filtering (“jailing”)

EASE Lab

Dmitrii Ustiugov

Docker as a Deployment-Native Solution

Dockerfile Image Container

>uid> (04 > Run > |

FROM ubuntu:20.04 : Clients specify their jobs with a dockerfile

RUN apt update && \ e “Arecipe” for constructing a Linux container
apt install python3-pip <...> && &
.............. pip3. install <...> o Docker images are built using a union filesystem (Linux unionFS)
..... c OPmepythoncode/path « Each line in a dockerfile is a read-only flesystem layer

Images are ready-to-run on any host with Linux and compatible kernel

18

EASE Lab

Dmitrii Ustiugov

Docker Workflow

Dockerfile

Source
Code
Repository

Build

Push

Docker

Container

Y 4iaulejuo)

Docker Engine

Host 1 OS (Linux)

Y laulejuo)

Image
Registry

Search Pull

Run

gJauleluo)
JJaulejuo)d

Host 2 OS (Linux)

19

EASE Lab

Dmitrii Ustiugov

Lightweight Virtualization with AWS Firecracker Hypervisor

Support stock Linux guest OS

e No compromises in security and compatibility

Offload duplicate functionality to host OS & CPU hardware

e Kernel-based Virtual Machine (Linux KVM)
o Virtual CPU is a host thread
o Guest-physical memory is host virtual memory

e Hardware extensions for virtualization
o E.g., nested page tables: one for host, one for guest

Minimize the emulation layer

e Minimal set of emulated devices: one NIC type, one disk type

Untrusted Code

Guest Kernel

KVM

Host Kernel

sandbox

20

EASE Lab

Dmitrii Ustiugov

State-of-the-Art Isolation

towoenead () s seoty

Processes

Virtual machines

Lightweight virtualization
+

Docker container deployment

Firecracker MicroVM:

No compromises in VM isolation
125ms VM startup time
<5MB memory overhead

21

EASE Lab

Dmitrii Ustiugov -

Q&A: Containers & VMs

22

Why Infrastructure-as-a-Service (laaS) is not Enough?

Provider maintains the datacenter

9 °
|
1T} o
(%]
< °
>
[o]
o0
>3
=]
d
D
Z
8
£ °
a)

Acquisition & operation

Power

Hardware & software upgrades

Client still manages the infrastructure

Scale per-application resources
Rent VMs
Request CPU, memory, disk, etc.

A~

Client deploys, monitors
and manages services

' -
s ’.\ Master node x
we™
Traffi Cluster
rarfic Scheduler tadat
(e.g., clicks) metadata
Worker node | - ’ Worker' |‘|ode 2 “~Worker node N
[Kubelet || || Kubelet) [Kubelet

Front-end (ingress) pod

_L Other pod]

|]S

[otherpod ||\ [EM
[Otherpod | \ [Otherpod |
[Otherpod | t Apppod1 |
[oOtherpod || |[Otherpod |

]

Other pod

Other pod

[
[
{ Apppod 2
[Other pod

[Other pod

) J 9O J

Infrastructure management puts a significant burden on a client

kubernetes

23

The Future of Cloud Computing is Serverless

Serverless programming via labor division

O aws

Google Cloud Platform

ml Vicrosoft
B Azure

EASE Lab

e Clients write code
e Providers adjust cloud resources

53 Write code (De)Allocate
= - loud
£ Pay-as-you-go pricing model clonaresotrEe
e Per {1-millisecond x 1-megabyte} billing KX —T=
e Free of charge when not in use A <:.z||
</> =
| ==
1</>

24

Service Developer’s Perspective

f():Video frame decode g(): Object recognition
§ Lo | XX
2 Trigger f(video fragment)> </> Invoke g(frame) </>
I 1

Dmitrii Ustiugov -

Write each function’s business logic
Compose functions via event triggers and RPC calls

Serverless premise:“No need to think about servers”
25

Provider’s Perspective

f():Video frame decode g(): Object recognition

I

</>

EASE Lab

RPC(fURL, <video>)

RPC(gURL, <frame>)

Dmitrii Ustiugov

Function instances are ephemeral, spawned on demand
O 0 to « instances of each function

O Provider to balance load and spawn / tear down instances

Serverless reality: Great for users, challenging for providers
26

Serverless behind the Scenes (Amazon Lambda)

Functions are deployed as lightweight VMs (MicroVMs)

e Packaged as Docker images

e Function code
o Provider’s runtime: HTTP-level server
o Client-defined handle in a high-level language (Python, NodedJS, Java, etc.)

EASE Lab

Dmitrii Ustiugov -

Enable elastic scaling via compute/state separation

e Functions are stateless: Any instance can handle any invocation of the function

e Must be composed with conventional storage services and databases

27

Knative: Serverless Under the Hood

Client deploys a function to FaaS

° Provides the code

0
f e Defines the triggers
2
Provider scales a functions based on
5
3 e Invocation traffic to ingress
2 e Adjusting the instance number to
}E the arrival rate
a)

A function instance is a pod, containing

A function handle (VM or container)
Queue-proxy monitors the load and
reports to the autoscaler service

The client is only responsible for the function handle, rest is by the provider

”n Client deploys once

-

-
-
-

-
-

~

~

Cluster
metadata

e

'
6 ’.\ Master node
.’ o
Traffic [Scheduler]*
(e.g., clicks) IPEIaEu
Worker node | ,,/’/ Workerll‘nlode 2
-~ >
[Kubelet || [Kubelet |
Front-end (ingress) pod Activator pod

[
[Other pod
[
[

]\
)
)
)

=

Other pod [Other pod
Other pod f() pod 1
[Other pod] [Other pod

)

- Monitor queue 4

"“~~Worker node N
[Kubelet |

_ ,r[Autoscaler pod]

kubernetes

28

EASE Lab

Dmitrii Ustiugov

Recap: The Evolution of Cloud

Pre-cloud Cloud (laaS)
App Monolith (Micro)services

Runtime & Guest OS

Scaling
Host OS

Bare metal
compute nodes

Networking

Storage

FaaS (serverless)

Functions

29

Takeaways

Cloud is a huge computer rental system

Datacenter managed as a pool of resources

EASE Lab

e User requirements: High availability, scalability, security
e Provider goals: High utilization, minimal infrastructure overheads

Dmitrii Ustiugov -

The future of cloud computing is serverless

e Labor division: Users write code, providers scale the resources
e Function-as-a-Service programming model
e Autoscaling of function instances & pay-for-what-you-use billing

30

qeT] 3Svi

Q&A

Ao3nnsn W

31

qeT] 3Svi

Backup

Ao2nnsn wq

32

EASE Lab

Dmitrii Ustiugov

Cluster Scheduling with Kubernetes (k8s)

Control plane (master node)

° Centralized scheduler
e Highly available

Services (i.e., the apps)
Pods (instances of a service)

e Units of scheduling
e Units of scaling

Worker nodes

e Hosts pods
e Kubelet manages pods per
request from the scheduler

Traffic
(e.g., clicks)

Worker node |

a®

P
Te’
...

-
-

-
-

V)
N

Client deploys, monitors
and manages services

Master node

[sChedu.er} {

Phe

I

Cluster

metadata

- Worker/node 2

| KubeFt |

/
’

_L Other pod]

\

Other pod

Other pot~_ |

Other pod

Other pod

[
[
[Other pod
[
[

Other pod

Front-end (ingress) podk\
J
J
J
]

|
|
\
|

Worker node N

]
App pod 1]
]

Other pod

[
[
L
[
[

~

Other pod

Other pod

App pod 2

Other pod

Other pod

) J 9O J

kubernetes

33

Knative: Serverless Under the Hood

Client deploys a function to FaaS

EASE Lab

Dmitrii Ustiugov

A function instance is a pod, containing

Provides the code
Defines the triggers

Provider scales a functions based on

Invocation traffic to ingress
Adjusts the instance number to the

arrival rate

An isolated function (VM or container)
Queue-proxy that monitors the load
and reports to the autoscaler service

(e.g., clicks)

auk
Traffic

Worker node |

a®
P

Te’

P>

-
-

-
-
-

”n Client deploys once

Master node

la
L
_- I

[sChedu.er} {

Cluster
metadata

e

- Worker/node 2

| KubeFt |

Front-end (ingress) pod

/

[k Activator pod
[Otherpod | __ 71
[otherpod || \[[Otherpod
[Otherpod | f() pod 1
[otherpod || [[Otherpod

)
)
)

AN
~
~
~
~

Worker node N

~
~
~

~

_ ,r[Autoscaler pod]

depth

Monitor queue 4

i
’
, 1

5

kubernetes

34

EASE Lab

Dmitrii Ustiugov

Cluster Scheduling with Kubernetes (k8s)

Control plane (master node)

e Centralized
e Highly available

Services (app building blocks)
Pods (instances of a service)

e Units of scheduling
e Units of scaling

Worker nodes

e Hosts pods

Developer

Key Value Store - etcd

%55

ril-

r

-1
Optional Add-Ons
(DNS, UL...)
")

w

Optional Add-Ons
(DNS, UL...)

. J

Worker Node

Worker Node

- .

Users

35

EASE Lab

Dmitrii Ustiugov

Cloud Evolution: Recap

2. What is [aaS — PaaS — FaaS - SaaS?

= 1= = = (=

Private Cloud Infrastructure Platform Function Software
(as aservice) (as aservice) (as aservice) (as a service)
(serverless arch)

Functions

Data

Application

Application Application Application

Runtime Runtime Runtime

Backend Code Backend Code Backend Code Backend Code Backend Code

Virtualization Virtualization Virtualization Virtualization

Server Machines Server Machines Server Machines Server Machines Server Machines

Storage

Storage Storage Storage Storage

(7}
(7]
7]

etworki

Networking Networking Networking

. Public Cloud Provider - responsibility
. Application Writer - responsibility

Awesome Vizualisation picked from : Ref : http://www.slideshare.net/manuel_silveyra/austin-
PS: We expect Container as a Service term in 2017-18 too, there is a separate section on it later

= Mobiliya

cf-meetup-20150224/3

23

qe 3Sv4

Ao2nisn 1nRIwg

37

Business and Computing

Today, business is digital: IT as a service, marketing campaigns, social nets, ...

EASE Lab

Say, you are going to open a new bakery

Bakery goods

Dmitrii Ustiugov

How easy is to build an online application?

38

EASE Lab

Dmitrii Ustiugov -

How to Build & Maintain Your Online Service?

The Cost Pyramide

App
%ﬂware infrastruc&
/ Hardware infrastructure \

Building an online application is hard

39

How to Deploy Your Digital Infrastructure?

How do you build an online service in

e Pre-cloud era (buy computers)
e Cloud servers era (rent computers from cloud providers)
e Serverless computing (never think of computers)

EASE Lab

Dmitrii Ustiugov -

Main trend: Democratization of computing

40

Computing Democratization: Provider vs. Client Efforts

_ Effort
Clients demand

e Low time-to-market is king
e Choose cheap & easy infrastructure

EASE Lab

clients providers

Providers deliver

Dmitrii Ustiugov

e High degree of automation
e Gradually takes over client responsibilities
o Infrastructure acquisition & upgrades

o Resources allocation (rental)
o And more!

Automation

Cloud democratization demands more from the cloud providers o

Pre-Cloud Era

Cluster: compute nodes

Buy a compute cluster on premises

e How to assemble, connect, maintain?
e How to power up?
[]

EASE Lab

Login node ‘—/Il\r;\t;j—;t/\:)—‘
Hire IT department that manages everything —FJ _—4 _—% Q
== [——=Z] [=—-Z] [-=——=2]

Dmitrii Ustiugov

e How to ensure low response time? Users, submitting jobs
e How to fix a security breach?
o

With on-premises infrastructure, clients are responsible for everything .

Client Requirements for Computing (in Any Era)

High availability: Users always get a consistent response in time

EASE Lab

Resources scaling: Always enough computers to handle the user traffic

Dmitrii Ustiugov -

Security: Across applications, applications vs. infrastructure

And more

43

High Availability

Low response time Data consistency and durability
. @ Low mean time is not good enough e Concurrent updates
- e The goal is to satisfy 99.9..9% of customers o E.g. people write comments on Facebook
< e Durable updates
. Number of requests o E.g., never lose one’s Instagram followers
Ed Amazon Found Every 100ms of Valid even in the presence of disasters
3 Latency Cost them 1% in Sales :
£
@)

Critical for business

90% 99% . : ‘ Fivi e MG ey
Response time Fire in 500m? OVH datacenter, France, March 2021

Guaranteeing high availability is challenging but important

44

Re S 0 u rce S S Ca I i n g Traffic to Microsoft Azure infrastructure

[Shahrad et al, ATC’20]

1.00 7
Traffic continuously changes °-75‘/\/"\/\}*\/\/\A/\/\/\/\/¢\,—v\
0.50 A

e Day/night, workday/weekend, celebrity posts oz:

0.00 T T T T T T 1
07/15 07/17 07/19 07/21 07/23 07/25 07/27 07/29

Time

EASE Lab

Resources must be provisioned for the worst case

Dmitrii Ustiugov

e \What is the worst case? An earthquake or a celebrity scandal?

Timely scaling of a service’s resources is key 0

EASE Lab

Dmitrii Ustiugov

Security

Cluster: compute nodes

Security is a killer for business i . HE Hl E

e Compromises are usually unacceptable

i
Security breaches happen regularly Login node 7&:@\?}_\
e Malicious users, libraries, OS bugs, etc. = =— I ‘ “ —
== =

e How to avoid? Mitigate?
Users, submitting jobs

Security by obscurity is not the answer

46

o

<
-
L
7]
<
wi

Dmitrii Ustiugov

How to Make Jobs Easy to Develop & Scale?

MONOLITHIC
ARCHITECTURE

User Interface

—
Business Logic /

Data Access
Layer

il

DB

MICROSERVICES ARCHITECTURE

Microservice Microservice Microservice Microservice

it Wt it it
e Wl o B e

Source: https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230

Split services into microservices

e Easy to develop & maintain
e Easyto scale
e [Easy to make fast

Separate business logic & data

e User-specific stateless logic
e Generic scalable databases
(provider-managed)

47

EASE Lab

Dmitrii Ustiugov

Microservice Architecture

gRPC architecture, Google

How to split an application into microservices?

e A microservice serves one purpose

e Communicate over lingua franca RPC fabric gRPC Server Ruby Client
o Language-agnostic protobuf file + code generation
o Support wide ranges of programming languages
o Examples: gRPC (Google), Apache Thrift (Facebook) C++ Service

,0’
o Response(s)

Agile development model Android-Java Client

e Independent updates of each microservice
o A microservice’s update does not bring entire service down
e Each microservice managed by a specific developers’ team

Developing and scaling of microservices is easier than monolith apps

48

