
D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Cloud Resources Management
Dmitrii Ustiugov

PhD candidate, the University of Edinburgh

08.11.2021, Extreme Computing course at the University of Edinburgh

1

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

In The Previous Episodes
You’ve learned a lot about distributed systems and frameworks

● Large-scale parallel computations
● Big data processing & management

This lecture: Cloud computing & cloud resources management

● A gigantic computer rental for clients (businesses)
● Cloud-scale OS, key components, technologies,

resources management

2

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

The Cloud Servers Era
Pay a cloud provider for Infrastructure-as-a-Service (IaaS)

● Rental instead of acquisition
● Examples: AWS EC2, Microsoft Azure

Provider is responsible for acquiring & maintaining the computers

Client manages the “cloud” infrastructure

● E.g., decides when to rent more/fewer computers
● Pay-for-what-you-use model (evolving all the time)

3

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Requirements for Running Cloud Services (Client side)

High availability

● Low response time
● Data durability

Resources scaling

● Adjust to dynamic traffic changes

Security

● Isolation across services
● Isolation between services and the provider

4

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Datacenters
Large scale

● 10s of thousands of compute nodes

Provider-managed

● Power supply & cooling
● Hardware and software upgrades

Geographically distributed

● Clients rent resources around the globe

5

Google’s datacenter campus

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Inside a Datacenter
Collection of cheap and standard components

● Racks of compute and storage nodes
● Network

Providers manages the bare-metal infrastructure

● Power and cooling
● Software and hardware infrastructure upgrades
● Security

6

Adopted from John Wilkes, Google

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Client View
Clients submit compute tasks

● Job
○ E.g., financial report generation

● Interactive service
○ E.g., a web form, social networks

Clients list resource requirements per task

● If interactive, for how long to run?
● Software: OS type, language runtime, …
● Hardware: CPU, memory, disk, network speed, …

7

Adopted from John Wilkes, Google

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Provider View
Millions of compute tasks to schedule per day

Challenges

● All client-side requirements:
○ High availability, fault tolerance,

scaling, security, …
● How to minimize a provider’s costs

○ Utilize all resources efficiently
○ Power off everything not in use

8

John’s
website

Mary’s report
generation

Margo’s
Python script

Adopted from John Wilkes, Google

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Cluster Scheduling with Kubernetes (k8s)

Control plane (master node)

● Centralized scheduler
● Highly available

Services (i.e., the apps)

Pods (instances of a service)

● Units of scheduling
● Units of scaling

Worker nodes

● Hosts for pods
● Per-worker kubelet manages pods

9

Traffic
(e.g., clicks)

Client deploys, monitors
and manages services

…

Kubelet

Front-end (ingress) pod

Other pod

Other pod

Other pod

Other pod

Kubelet

Other pod

Other pod

App pod 1

Other pod

Other pod

Kubelet

Other pod

App pod 2

Other pod

Other pod

Other pod

Scheduler Cluster
metadata

Master node

Worker node 1 Worker node 2 Worker node N

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Co-location at Google with Borg (k8s predecessor)

10

Tight packing of jobs on each node

Minimize the number of underutilized nodes

Minimize stranded resources

● Nodes with free memory but
no free cores

Continuous cluster nodes monitoring

● Resource reclamation
● Health checks per node & pod

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Q&A: Datacenter

11

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Datacenter Resources Rental Challenges
What is the rental granularity and for how long?

● Renting for days is wasteful
○ E.g., need more resources during the day, less at night

● Renting entire bare-metal nodes is too expensive
○ Many compute tasks are too small or short

Co-locating compute tasks seems natural, but:

● How? Is it secure? Is it possible to satisfy all client requirements?

12“Careful” co-location of compute tasks is necessary

CPI^2 (Google, 2013)

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Requirements
Client side

High availability

● Low response time
● Data durability

Resources scaling

● Adjust to dynamic traffic changes

Security

● Isolation across jobs
● Isolation between a job and the provider

13

Provider side

High resource utilization

● Nodes either in use or powered off
● Aggressive co-location of jobs

Minimal infrastructure overhead

● Performance & memory

Security

● Isolation across clients, clients and provider

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Isolation Technologies

14

Low overhead High security

Is there a solution that combines both?

Virtual machinesProcesses

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Isolation Spectrum Extremes

15

Virtual machines

Hardware (CPU, memory, disks)

Guest OS

Libs & drivers

Application

Guest OS

Libs & drivers

Application

Guest OS

Libs & drivers

Application

Host OS / Hypervisor

High degree of isolation 👍
High overhead 👎

None of the two extremes suffice

Processes

Hardware (CPU, memory, disks)

App App App

Host OS

Libs & drivers

App App App

Low overhead 👍
Vast attack surface 👎

● Shared host OS kernel, CPU, NICs, disks
● May crash the host OS (the blue screen of death)

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

The Two Roads towards a “Perfect” Isolation Technology

16

Make process isolation stronger

Namespace abstractions

● Virtualize the process tree
● Virtualize the network
● Virtualize the filesystem (“chroot”)

Filter system calls to the host kernel

● Which syscalls? With which arguments?

Make VMs leaner

Is guest OS necessary?

● “Double” memory allocation in host & guest
● “Double” scheduling in host & guest
● …

Need to emulate all possible devices?

● E.g., is a 10-years old NIC still relevant?

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Containers: Towards Secure Processes
Originated from Linux cgroups & namespaces, zones in Solaris OS, etc.

A container is a combination of technologies:

● Namespaces:
○ Isolated PID tree: All processes forked from container’s private PID 1
○ Virtual network: Each container has its own IP address
○ Isolated root filesystem

● Resource groups (e.g., Linux cgroups)
○ E.g., limiting CPU quota and physical memory allocation

Docker revolution through automation

● Easy building & deploying using existing technologies
● AppArmor for syscall filtering (“jailing”)

17

Hardware (CPU, memory, disks)

Container
runtime

Libs & drivers

Application

Container
runtime

Libs & drivers

Application

Container
runtime

Libs & drivers

Application

Host OS

Container Container Container

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Clients specify their jobs with a dockerfile

● “A recipe” for constructing a Linux container

Docker images are built using a union filesystem (Linux unionFS)

● Each line in a dockerfile is a read-only filesystem layer

Images are ready-to-run on any host with Linux and compatible kernel

Docker as a Deployment-Native Solution

18

FROM ubuntu:20.04

RUN apt update && \
 apt install python3-pip <...> && \
 pip3 install <...>

COPY my_python_code /path

CMD [“python”, “/path/main.py”]

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Docker Workflow

19

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Lightweight Virtualization with AWS Firecracker Hypervisor

Support stock Linux guest OS

● No compromises in security and compatibility

Offload duplicate functionality to host OS & CPU hardware

● Kernel-based Virtual Machine (Linux KVM)
○ Virtual CPU is a host thread
○ Guest-physical memory is host virtual memory

● Hardware extensions for virtualization
○ E.g., nested page tables: one for host, one for guest

Minimize the emulation layer

● Minimal set of emulated devices: one NIC type, one disk type

20

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

State-of-the-Art Isolation

21

Low overhead High security

Lightweight virtualization
+

Docker container deployment

Firecracker MicroVM:

➡ No compromises in VM isolation
➡ 125ms VM startup time
➡ <5MB memory overhead

Virtual machinesProcesses

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Q&A: Containers & VMs

22

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Why Infrastructure-as-a-Service (IaaS) is not Enough?

Provider maintains the datacenter

● Acquisition & operation
● Power
● Hardware & software upgrades

Client still manages the infrastructure

● Scale per-application resources
● Rent VMs
● Request CPU, memory, disk, etc.

23Infrastructure management puts a significant burden on a client

Traffic
(e.g., clicks)

Client deploys, monitors
and manages services

…

Kubelet

Front-end (ingress) pod

Other pod

Other pod

Other pod

Other pod

Kubelet

Other pod

Other pod

App pod 1

Other pod

Other pod

Kubelet

Other pod

App pod 2

Other pod

Other pod

Other pod

Scheduler Cluster
metadata

Master node

Worker node 1 Worker node 2 Worker node N

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

The Future of Cloud Computing is Serverless

Serverless programming via labor division

● Clients write code
● Providers adjust cloud resources

Pay-as-you-go pricing model

● Per {1-millisecond x 1-megabyte} billing
● Free of charge when not in use

24

Write code (De)Allocate
cloud resources

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Service Developer’s Perspective

Write each function’s business logic
Compose functions via event triggers and RPC calls

25

Invoke g(frame)

f(): Video frame decode g(): Object recognition

Trigger f(video fragment)

Serverless premise: “No need to think about servers”

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Provider’s Perspective

Function instances are ephemeral, spawned on demand
○ 0 to ∞ instances of each function
○ Provider to balance load and spawn / tear down instances

26

RPC(gURL, <frame>)RPC(fURL, <video>)

Serverless reality: Great for users, challenging for providers

RPC(fURL, <video>) RPC(gURL, <frame>)
RPC(gURL, <frame>)

RPC(gURL, <frame>)

f(): Video frame decode g(): Object recognition

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Serverless behind the Scenes (Amazon Lambda)
Functions are deployed as lightweight VMs (MicroVMs)

● Packaged as Docker images
● Function code

○ Provider’s runtime: HTTP-level server
○ Client-defined handle in a high-level language (Python, NodeJS, Java, etc.)

Enable elastic scaling via compute/state separation

● Functions are stateless: Any instance can handle any invocation of the function
● Must be composed with conventional storage services and databases

27

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Knative: Serverless Under the Hood

Client deploys a function to FaaS

● Provides the code
● Defines the triggers

Provider scales a functions based on

● Invocation traffic to ingress
● Adjusting the instance number to

the arrival rate

A function instance is a pod, containing

● A function handle (VM or container)
● Queue-proxy monitors the load and

reports to the autoscaler service

28

Traffic
(e.g., clicks)

Client deploys once

…

Kubelet

Front-end (ingress) pod

Other pod

Other pod

Other pod

Other pod

Kubelet

Activator pod

f() pod 1

Other pod

Other pod

Kubelet

Autoscaler pod

Scheduler Cluster
metadata

Master node

Worker node 1 Worker node 2 Worker node N

Monitor queue
depth

Queue
proxy f()

handle

f() pod 2

The client is only responsible for the function handle, rest is by the provider

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Recap: The Evolution of Cloud

29

Pre-cloud Cloud (IaaS) FaaS (serverless)

App Monolith (Micro)services Functions

Runtime & Guest OS

Scaling

Host OS

Bare metal
compute nodes

Networking

Storage

Provider’s responsibility
Client’s responsibility

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Takeaways
Cloud is a huge computer rental system

Datacenter managed as a pool of resources

● User requirements: High availability, scalability, security
● Provider goals: High utilization, minimal infrastructure overheads

The future of cloud computing is serverless

● Labor division: Users write code, providers scale the resources
● Function-as-a-Service programming model
● Autoscaling of function instances & pay-for-what-you-use billing

30

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Q & A

31

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Backup

32

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Cluster Scheduling with Kubernetes (k8s)

Control plane (master node)

● Centralized scheduler
● Highly available

Services (i.e., the apps)

Pods (instances of a service)

● Units of scheduling
● Units of scaling

Worker nodes

● Hosts pods
● Kubelet manages pods per

request from the scheduler

33

Traffic
(e.g., clicks)

Client deploys, monitors
and manages services

…

Kubelet

Front-end (ingress) pod

Other pod

Other pod

Other pod

Other pod

Kubelet

Other pod

Other pod

App pod 1

Other pod

Other pod

Kubelet

Other pod

App pod 2

Other pod

Other pod

Other pod

Scheduler Cluster
metadata

Master node

Worker node 1 Worker node 2 Worker node N

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Knative: Serverless Under the Hood
Client deploys a function to FaaS

● Provides the code
● Defines the triggers

Provider scales a functions based on

● Invocation traffic to ingress
● Adjusts the instance number to the

arrival rate

A function instance is a pod, containing

● An isolated function (VM or container)
● Queue-proxy that monitors the load

and reports to the autoscaler service

34

Traffic
(e.g., clicks)

Client deploys once

…

Kubelet

Front-end (ingress) pod

Other pod

Other pod

Other pod

Other pod

Kubelet

Activator pod

f() pod 1

Other pod

Other pod

Kubelet

Autoscaler pod

Scheduler Cluster
metadata

Master node

Worker node 1 Worker node 2 Worker node N

Monitor queue
depth

Queue
proxy f()

handle

f() pod 2

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Cluster Scheduling with Kubernetes (k8s)
Control plane (master node)

● Centralized
● Highly available

Services (app building blocks)

Pods (instances of a service)

● Units of scheduling
● Units of scaling

Worker nodes

● Hosts pods

35

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Cloud Evolution: Recap

36

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

37

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Business and Computing
Today, business is digital: IT as a service, marketing campaigns, social nets, …

Say, you are going to open a new bakery

38

Bakery goods Users Food delivery app

How easy is to build an online application?

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

How to Build & Maintain Your Online Service?

39

App

Software infrastructure

Hardware infrastructure

Building an online application is hard

The Cost Pyramide

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

How to Deploy Your Digital Infrastructure?

How do you build an online service in

● Pre-cloud era (buy computers)
● Cloud servers era (rent computers from cloud providers)
● Serverless computing (never think of computers)

Main trend: Democratization of computing

40

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Computing Democratization: Provider vs. Client Efforts
Clients demand

● Low time-to-market is king
● Choose cheap & easy infrastructure

Providers deliver

● High degree of automation
● Gradually takes over client responsibilities

○ Infrastructure acquisition & upgrades
○ Resources allocation (rental)
○ And more!

Effort

Automation

clients providers

Cloud democratization demands more from the cloud providers 41

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Pre-Cloud Era
Buy a compute cluster on premises

● How to assemble, connect, maintain?
● How to power up?
● …

Hire IT department that manages everything

● How to ensure low response time?
● How to fix a security breach?
● …

With on-premises infrastructure, clients are responsible for everything 42

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Client Requirements for Computing (in Any Era)
High availability: Users always get a consistent response in time

Resources scaling: Always enough computers to handle the user traffic

Security: Across applications, applications vs. infrastructure

And more

43

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

High Availability
Low response time

● Low mean time is not good enough
● The goal is to satisfy 99.9..9% of customers

44

Data consistency and durability

● Concurrent updates
○ E.g., people write comments on Facebook

● Durable updates
○ E.g., never lose one’s Instagram followers

Valid even in the presence of disasters

Critical for business

90% 99%

Number of requests

Response time

Guaranteeing high availability is challenging but important

Fire in 500m2 OVH datacenter, France, March 2021

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Resources Scaling
Traffic continuously changes

● Day/night, workday/weekend, celebrity posts

Resources must be provisioned for the worst case

● What is the worst case? An earthquake or a celebrity scandal?

45Timely scaling of a service’s resources is key

Traffic to Microsoft Azure infrastructure
[Shahrad et al, ATC’20]

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Security
Security is a killer for business

● Compromises are usually unacceptable

Security breaches happen regularly

● Malicious users, libraries, OS bugs, etc.
● How to avoid? Mitigate?

Security by obscurity is not the answer

46

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

How to Make Jobs Easy to Develop & Scale?

Split services into microservices

● Easy to develop & maintain
● Easy to scale
● Easy to make fast

Separate business logic & data

● User-specific stateless logic
● Generic scalable databases

(provider-managed)

47
Source: https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230

D
m

itr
ii

U
st

iu
go

v

 -

 E
AS

E
La

b

Microservice Architecture
How to split an application into microservices?

● A microservice serves one purpose
● Communicate over lingua franca RPC fabric

○ Language-agnostic protobuf file + code generation
○ Support wide ranges of programming languages
○ Examples: gRPC (Google), Apache Thrift (Facebook)

Agile development model

● Independent updates of each microservice
○ A microservice’s update does not bring entire service down

● Each microservice managed by a specific developers’ team

48

gRPC architecture, Google

Developing and scaling of microservices is easier than monolith apps

