Cloud Computing: Evolution,Technologies, Future

Dmitrii Ustiugov
PhD candidate, the University of Edinburgh

30.03.2021, Operating Systems course at the University of Edinburgh

In The Previous Episodes

You've learned a lot about individual computers

e How applications work in the context of an OS

o Key abstractions like processes and threads
o Allocating and managing resources (e.g., memory, disk)

e Key technologies
o Storage, synchronization, virtualization, etc.

This lecture: Cloud computing

e A gigantic computer rental for clients (businesses)
e Lots of challenges for cloud providers

Cloud as Today’s Dominant Computing Platform

ZE THE FUTURE

Worldwide Cloud IT Infrastructure Market Forecast by
Deployment Type, 2018- 2024 (shares based on Value)

Ll
%
0
20

aditional IT mPrivate Cloud m Public Cloud

JDU
2R E R

Source: IDC 2020

Cloud computing is prevalent

e Traditional IT decreases (-2% annually)
o l.e., non-cloud, on premises
e Public cloud is to dominate (+10% annually)

Business and Computing

Today, business is digital: IT as a service, marketing campaigns, social nets, ...

Say, you are going to open a new bakery

Bakery goods

How easy is to build an online application?

How to Build & Maintain Your Online Service?

The Cost Pyramide

/N

App
%ﬂware infrastruc&
/ Hardware infrastructure \

Building an online application is hard

How to Deploy Your Digital Infrastructure?

How do you build an online service in

e Pre-cloud era (buy computers)
e Cloud servers era (rent computers from cloud providers)
e Serverless computing (never think of computers)

Main trend: Democratization of computing

Computing Democratization: Provider vs. Client Efforts

Clients demand

e Low time-to-market is king
e Choose cheap & easy infrastructure

Providers deliver

e High degree of automation
e Gradually takes over client responsibilities
o Infrastructure acquisition & upgrades

o Resources allocation (rental)
o And more!

Effort

clients providers

Automation

Cloud democratization demands more from the cloud providers

Pre-Cloud Era

Cluster: compute nodes

Buy a compute cluster on premises

e How to assemble, connect, maintain?
e How to power up?
[]

Login node ‘—/Il\r;\t;j—;t/\:)—‘
I [
Hire IT department that manages everything —FJ _—4 _—% Q
== [——=Z] [=—-Z] [=——Z]

e How to ensure low response time? Users, submitting jobs
e How to fix a security breach?
o

With on-premises infrastructure, clients are responsible for everything

Client Requirements for Computing (in Any Era)

High availability: Users always get a consistent response in time
Resources scaling: Always enough computers to handle the user traffic
Security: Across applications, applications vs. infrastructure

And more

High Availability

Low response time Data consistency and durability
e |ow mean time is not good enough e Concurrent updates
e The goal is to satisfy 99.9..9% of customers o E.g., people write comments on Facebook
e Durable updates
Number of requests o E.g., never lose one’s Instagram followers

Amazon Found Every 100ms of Valid even in the presence of disasters
Latency Cost them 1% in Sales :

Critical for business

90% 99% . : ‘ Fivi x IRSEESSS Sy s
Response time Fire in 500m? OVH datacenter, France, March 2021

Guaranteeing high availability is challenging but important

10

Re S 0 u rce S S Ca I i n g Traffic to Microsoft Azure infrastructure

[Shahrad et al, ATC’20]

1.00
Traffic continuously changes °-75‘/\/"\/\}*\/\/\A/\/\/\/\/¢\,—v\
0.50 A

e Day/night, workday/weekend, celebrity posts oz:

0.00 T T T T T T 1
07/15 07/17 07/19 07/21 07/23 07/25 07/27 07/29
Time

Resources must be provisioned for the worst case

e \What is the worst case? An earthquake or a celebrity scandal?

Timely scaling of a service’s resources is key !

Security

Cluster: compute nodes

Security is a killer for business i HE Hl E

e Compromises are usually unacceptable

i
Security breaches happen regularly Login node 7&:@\?}_\
e Malicious users, libraries, OS bugs, etc. = =— I ‘ “ —
== =

e How to avoid? Mitigate?
Users, submitting jobs

Security by obscurity is not the answer

12

Cloud Servers Era

Pay a cloud provider for Infrastructure-as-a-Service (laaS)

e Rental instead of acquisition
e Examples: AWS EC2, Microsoft Azure

D

Google Cloud Platform

ml \icros
EE0 Azure

Provider is responsible for acquiring & maintaining the computers

Client stills needs to manage the “cloud” infrastructure

e E.g., decides when to rent more/fewer computers

13

Datacenters

Large scale Google’s datacenter campus

e 10s of thousands of compute nodes

Provider-managed

e Power supply
e Hardware and software upgrades

Geographically distributed

e Clients rent resources around the globe
e Recall the high-availability requirement

14

Inside a Datacenter

Collection of cheap and standard components

e Racks of compute and storage nodes

Providers manages the bare-metal infrastructure

e Power and cooling
e Software and hardware infrastructure upgrades
e Security

Adopted from John Wilkes, Google

15

Client View

Clients submit compute tasks
e Job

o E.g., financial report generation

e Interactive service
o E.g., aweb form, social networks

Clients list resource requirements per task

e If interactive, for how long to run?

e Software: OS type, language runtime, ...

job hello_world = {

runtime = { cell = 'ic' } // Cell (cluster) to run in
binary = '.../hello_world_webserver' // Program to run
args = { port = '%port%' } // Command line parameters
requirements = { // Resource requirements (optional)

ram = 100M

disk = 100M

cpu = 0.1
}

replicas = 10000 // Number of tasks

Adopted from John Wilkes, Google

e Hardware: CPU, memory, disk, network speed, ...

16

Provider View

Millions of compute tasks to schedule

Mary’s report
generation

I websit

e b

Challenges

e All client-side requirements:
o High availability, scaling, security, ...
e How to minimize a provider’s costs

o Utilize all resources efficiently
o Power off everything not in use

Adopted from John Wilkes, Google

Cluster Scheduling with Kubernetes (k8s)

Control plane (master node)

e Centralized scheduler
e Highly available

Services (i.e., the apps)
Pods (instances of a service)

e Units of scheduling
e Units of scaling

Worker nodes

e Hosts for pods
e Per-worker kubelet manages pods

)
l\-.l

Client deploys, monitors
and manages services

]

”~ o .
", Master node e
o o
. -
Traffic [Scheduler]* CliE ey
(e.g., clicks) metadata
Worker node | o Worker' |‘|ode 2 "~~~Worker node N
[Kubelet || || Kubelet) [Kubelet
[Front-end (ingress) podk\L Other pod] [Other pod]
\
[Other pod] [Othe%\]_ . [Other pod]
[Other pod] [Other pod] \-[App pod 2]
[Other pod] t App pod 1] [Other pod]
[Other pod] [Other pod] [Other pod]

kubernetes

18

Co-location at Google with Borg (k8s predecessor)

il !I,.,.!!!I! L !llllilJlllllllllm

Tight packing of jobs on each node | I

Minimize the number of underutilized nodes ?, ||!!| :
B 10-

“l

Il

Minimize stranded resources

e Nodes with free memory but
no free cores

: i 2 I ! ~_ | Il
il | | ['
£ 80- - i i,
.. ¢ | I i 4‘ I'
3 40- U H I
Continuous cluster nodes monitoring il ik Il li ! | i i !|II “|

ed memory (in GB)
=

e Resource reclamation : oS stranded resources
e Health checks per node & pod available resources machine

19

Datacenter Resources Rental Challenges

What is the rental granularity and for how long?

100%

e Renting for days is wasteful
o E.g., need more resources during the day, less at night

CDF

40% -

80%
60% -

20%

e Renting entire bare-metal nodes is too expensive S
o Many compute tasks are too small or short

i 1 1 1 1 1 1 ' 1
10 20 30 40 50 60 70 80 90 100

tasks per machine

Co-locating compute tasks seems natural, but:

CPI*2 (Google, 2013)

e How? Is it secure? Is it possible to satisfy all client requirements?

“Careful” co-location of compute tasks is necessary 20

Requirements

Client side
High availability

e |ow response time
e Data durability

Resources scaling
e Adjust to dynamic traffic changes
Security

e Isolation across jobs
e Isolation between a job and the provider

Provider side

-

~

High resource utilization l

kubernetes

e Nodes either in use or powered off

e Aggressive co-location of jobs
Minimal infrastructure overhead
e Performance & memory

®

Security ¢

®

o

\o\lsolation across clients, clients and providy

21

Isolation Technologies

towoenead 0 () o seoty

Processes @ Virtual machines

O

Is there a solution that combines both?

22

Isolation Spectrum Extremes

Processes Virtual machines
Application Application Application
App App App App App App Libs & drivers || Libs & drivers || Libs & drivers
Libs & drivers Guest OS Guest OS Guest OS
Host OS Host OS / Hypervisor
Hardware (CPU, memory, disks) Hardware (CPU, memory, disks)
Low overhead High degree of isolation
Vast attack surface High overhead

e Shared host OS kernel, CPU, NICs, disks
e May crash the host OS (the blue screen of death)

None of the two extremes suffice

The Two Roads towards a “Perfect” Isolation Technology

Make process isolation stronger

Namespace abstractions

e \Virtualize the process tree
e Virtualize the network
e Virtualize the filesystem (“chroot”)

Filter system calls to the host kernel

e Which syscalls? With which arguments?

Make VMs leaner

Is guest OS necessary?

e “Double” memory allocation in host & guest

e “Double” scheduling in host & guest
[

Need to emulate all possible devices?

e E.g.,isa 10-years old NIC still relevant?

24

Containers: Towards Secure Processes

Originated from Linux cgroups & namespaces, zones in Solaris OS, etc.

Container Container Container

Application Application Application A container is a combination of technologies:
Libs & drivers Libs & drivers Libs & drivers o Namespaces:

o Isolated PID tree: All processes forked from container’s private PID 1
CErE T CErETET CEriETET o Virtual network: Each container has its own IP address
runtime runtime runtime o Isolated root filesystem
e Resource groups (e.g., Linux cgroups)
Host OS o E.g., limiting CPU quota and physical memory allocation
Hardware (CPU, memory, disks . .
{ i) Docker revolution through automation

e Easy building & deploying using existing technologies
e AppArmor for syscall filtering (“jailing”)

Docker as a Deployment-Native Solution

Dockerfile Image Container

>Buid> (04 > Run > |

Clients specify their jobs with a dockerfile
e “Arecipe” for constructing a Linux container
Docker images are built using a union filesystem (Linux unionFS)

e Each line in a dockerfile is a read-only filesystem layer

Images are ready-to-run on any host with Linux and compatible kernel

26

Docker Workflow

Dockerfile

Source
Code
Repository

Build

Push

Docker

Container

v lauiejuo)

Docker Engine

Host 1 OS (Linux)

Y i3ulejuo)

Image
Registry

Search pull

Run

gi=aulejuo)n
DJdaulejuod

Host 2 OS (Linux)

27

Lightweight Virtualization with AWS Firecracker Hypervisor

Support stock Linux guest OS

e No compromises in security and compatibility

Offload duplicate functionality to host OS & CPU hardware

e Kernel-based Virtual Machine (Linux KVM)
o Virtual CPU is a host thread
o Guest-physical memory is host virtual memory

e Hardware extensions for virtualization
o E.g., nested page tables: one for host, one for guest

Minimize the emulation layer

e Minimal set of emulated devices:
one NIC type, one disk type

Untrusted Code

Guest Kernel

I D l.____|___|

KVM

Host Kernel

sandbox

28

State-of-the-Art Isolation

towoenead 0 () rishseoty

Processes

Virtual machines

Lightweight virtualization
+

Docker container deployment

Firecracker MicroVM:

No compromises in VM isolation
125ms VM startup time
<5MB memory overhead

29

Why Infrastructure-as-a-Service (laaS) is not Enough?

Provider maintains the datacenter

e Acquisition & operation
e Power
e Hardware & software upgrades

Client still manages the infrastructure

e Scale per-application resources

Rent VMs

e Request CPU, memory, disk, etc.

A~

Client deploys, monitors
and manages services

]

' P
s ’.\ Master node x
..
Cluster
Traffic Scheduler s
(e.g., clicks) ctadala
Worker node | - ’ Worker' |‘|ode 2 “~Worker node N
[Kubelet || || Kubelet) [Kubelet
[Front-end (ingress) podk\L Other pod] [Other pod
\
[Other pod] [Othe%\]_ . [Other pod
[Other pod] [Other pod] \-[App pod 2
[Other pod] t App pod 1] [Other pod
[Other pod] [Other pod] [Other pod

) J 9O J

Infrastructure management puts a significant burden on a client

kubernetes

30

How to Make Jobs Easy to Develop & Scale?

MONOL

ARCHITECTURE

User Interface

—
Business Logic /

Data Access
Layer

il

DB

e MICROSERVICES ARCHITECTURE

Microservice Microservice Microservice Microservice

it Wt it it
e Wl o B e

Source: https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230

Split services into microservices

e FEasy to develop & maintain
e Easytoscale
e [Easy to make fast

Separate business logic & data

e User-specific stateless logic
e Generic scalable databases
(provider-managed)

31

Microservice Architecture

How to split an application into microservices?

e A microservice serves one purpose

e Communicate over lingua franca RPC fabric
o Language-agnostic protobuf file + code generation
o Support wide ranges of programming languages
o Examples: gRPC (Google), Apache Thrift (Facebook)

Agile development model

e Independent updates of each microservice

gRPC architecture, Google

gRPC Server Ruby Client

C++ Service

,0’
o Response(s)

Android-Java Client

o A microservice’s update does not bring entire service down
e Each microservice managed by a specific developers’ team

Developing and scaling of microservices is easier than monolith apps 32

The Future of Cloud Computing is Serverless

Functions-as-a-Service (FaaS) paradigm shift

e Clients write code as functions
O Specify when to invoke (e.g., on clicks)

e Providers adjust per-function resources
O Scale instances of functions with traffic

from 0 to virtually infinity
Pay-as-you-go pricing model

e Per {1-millisecond x 1-megabyte} billing
e Free of charge when not in use

Write code
aka Functions

</>

D

Google Cloud Platform

ml Vicrosoft
Bl Azure

aws

"/

Scale Function

instances

I
LA

</>

33

Serverless App: The Client and Provider Perspectives

f():Video frame decode g(): Object recognition

— — gl
E </> </> _<:j->f--lf2 é; =15
% L</>

Clients provides app’s functions, providers scale instances of functions 34

Serverless behind the Scenes (Amazon Lambda)

Functions are deployed as lightweight VMs

e Packaged as Docker images
e Function invocation is connected to triggers (e.g., clicks, image uploads)

e Function code
o Provider’s runtime: HTTP-level server
o Client-defined handle in a high-level language (Python, NodedS, Java, etc.)

Limitation: Functions are stateless

e Any function instance can handle any invocation of that function
e Must be composed with conventional storage services and databases

35

Knative: Serverless Under the Hood

Client deploys a function to FaaS

e Provides the code
e Defines the triggers

Provider scales a functions based on

e Invocation traffic to ingress
e Adjusting the instance number to
the arrival rate

A function instance is a pod, containing

A function handle (VM or container)
Queue-proxy monitors the load and
reports to the autoscaler service

The client is only responsible for the function handle, rest is by the provider

ﬂ
Q

Traffic
(e.g., clicks)

.
«‘3

”n Client deploys once

-

Master node

-

-
-

-
-
-

[Scheduler]*

/” 1
- 1

-
-

- ~
- 1 ~

~

~

~

Cluster
metadata

e

Workernode L | .=~ Worker fiode 2
[Kutjelet)| [Kubelet |
[Fron-end (ngress) p°dk Activator pod
[Otherpod | }
([otherpod || \|[[Otherpod |
[Otherpod | f() pod 1]
[Otherpod || |[Otherpod |

- Monitor queue 4

"“~~Worker node N
[Kubelet |

_ ,r[Autoscaler pod]

kubernetes

36

Recap: The Evolution of Cloud

Pre-cloud Cloud (laaS)
App Monolith Microservices

Runtime & Guest OS

Scaling
Host OS

Bare metal
compute nodes

Networking

Storage

FaaS (serverless)

Functions

37

Takeaways

Low time-to-market is key for clients business

Democratization of computing
e Providers gradually take over many of their clients’ responsibilities

o Providers manage the infrastructure, clients focus on the business logic
e The future of computing is serverless

The pay-as-you-go pricing model

e Cloud resources rental with fine-grain autoscaling

38

