
Enabling In-Vitro Serverless Systems Research
Dmitrii Ustiugov

∗

NTU Singapore

Singapore

Dohyun Park
∗

UIUC

USA

Lazar Cvetković

ETH Zurich

Switzerland

Mihajlo Djokic
∗

IBM Research Europe

Switzerland

Hongyu Hè

ETH Zurich

Switzerland

Boris Grot

University of Edinburgh

UK

Ana Klimovic

ETH Zurich

Switzerland

ACM Reference Format:
Dmitrii Ustiugov, Dohyun Park, Lazar Cvetković, Mihajlo Djokic,

Hongyu Hè, Boris Grot, and Ana Klimovic. 2023. Enabling In-Vitro

Serverless Systems Research. In 4th Workshop on Resource Disag-
gregation and Serverless (WORDS ’23), October 23, 2023, Koblenz,
Germany. ACM, New York, NY, USA, 7 pages. https://doi.org/10.

1145/3605181.3626191

Abstract
Serverless is an increasingly popular cloud computing para-

digm that has stimulated new systems research opportunities.

However, developing and evaluating serverless systems in

a research setting (i.e., “in-vitro”, without access to a large-

scale production cluster and real workloads) is challenging

yet vital for innovation. Recently, several serverless providers

have released production traces consisting of large sets of

functions with their invocation inter-arrival time, execution

time, and memory footprint distributions. However, execut-

ing the workload synthesized from these traces requires a

massive cluster, making experiments expensive and time-

consuming.

In this work, we show how to use the data available in

production traces to construct workload summaries of config-
urable scales that remain highly representative of the original

∗
Work done while at ETH Zurich.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

WORDS ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0250-1/23/10. . . $15.00

https://doi.org/10.1145/3605181.3626191

trace characteristics and can be used to evaluate serverless

systems in-vitro. Compared to random sampling of functions

from the original trace, our method can generate summaries

of up to 10× higher representativity, measured as the av-

erage of the Wasserstein distances of the distributions of

interest (e.g., function execution time and invocation inter-

arrival time) from the respective distributions in the original

trace. We release our toolchain that enables researchers to

synthesize representative workload summaries and show

how it can be used to evaluate the performance of serverless

systems at diverse load scale factors.

1 INTRODUCTION
Serverless has emerged as a popular cloud computing para-

digm that offers a convenient high-level abstraction to the

cloud for users, with cloud providers taking responsibility

for managing and scaling resources based on real-time ap-

plication load. In contrast to traditional Infrastructure-as-a-

Service computing, in which users select virtual machines

(VMs) with pre-determined ratios of CPU, memory, storage,

and networking resources, serverless computing allows the

underlying platform to manage and optimize resource allo-

cations across all workloads to improve performance and

cost-efficiency. Optimizing resource management for server-

less workloads is a key systems research challenge.

Exploring serverless systems research directions requires

access to representative workloads. Although several cloud

providers have released production traces of serverless func-

tion invocations [22, 27], several key challenges exist in using

these traces for systems research.

First, for anonymity reasons, these traces do not include

the source code or executable binaries of the actual serverless

workloads, but rather only certain statistics about function

invocation and execution patterns. For example, the two-

week Azure Functions trace [22] captures each function’s

invocations at a per-minute granularity, along with various

percentiles of the function’s execution time and memory

https://doi.org/10.1145/3605181.3626191
https://doi.org/10.1145/3605181.3626191
https://doi.org/10.1145/3605181.3626191

WORDS ’23, October 23, 2023, Koblenz, GermanyDmitrii Ustiugov, Dohyun Park, Lazar Cvetković, Mihajlo Djokic, Hongyu Hè, Boris Grot, and Ana Klimovic

footprint across all of its invocations. This information can be

used to synthesize representative workloads for experiments.

Second, replaying an entire workload trace requires signif-

icant resources, as traces may be collected at the scale of an

entire datacenter for multiple days or weeks. For example, we

find that replaying the full Azure Functions trace requires an

experimental platform with over 10 thousand CPU cores (§2).

Executing experiments at this scale for system design explo-

ration is time-consuming and expensive, limiting the speed

of innovation. Unfortunately, simply randomly sampling

functions from the trace (as many prior papers have done

for their evaluation) can lead to unrepresentative workloads,

as functions have skewed invocation patterns and execution

time characteristics. Hence, we need a robust methodology

for scaling down traces while maintaining representativity.

Finally, evaluating serverless systems with a gradually

increasing load factor is desirable, similar to how database

benchmarks like TPC offer different scale factors [6]. How-

ever, naively sampling a monotonically increasing number

of functions from a trace does not necessarily monotoni-

cally increase load due to the vast differences in invocation

frequency and CPU/memory usage across functions.

Researchers have adopted ad-hoc approaches for down-

scaling workload traces; however, these don’t fully meet the

needs of a robust research methodology. Some works use

approaches that fail to preserve key characteristics of the

workload trace. Others lack a complete description of the pro-

posed sampling approach, making it difficult to understand

and evaluate the technique.

To enable meaningful and reproducible research and anal-

ysis, the community needs a methodology for scaling server-

less production workload traces to various load scaling fac-

tors while preserving key workload characteristics, namely

the distributions of function invocation inter-arrival times

and CPU/memory resource usage.

We propose a methodology to synthesize representative

and statistically meaningful workload summaries from large-

scale production workload traces. A particular strength of

our methodology is that it can provide workload summaries

at various scale and load factors. We demonstrate how our

methodology can be applied to theAzure Functions trace [22].

We release the synthesized workload summaries of the Azure

trace and our toolchain at https://github.com/vhive-serverless/

invitro, which consists of a trace sampler and a load genera-
tor, so researchers can use the methodology for other traces.

Our In-Vitro sampler applies an iterative method of sam-

pling functions while minimizing the Wasserstein distance

between the full trace and sampled trace distributions of

key workload characteristics, namely the function invoca-

tion distribution and function resource usage distribution.

Compared to the random sampling of functions, In-Vitro

generates workload summaries with much higher represen-

tativity, i.e., up to 10× lower Wasserstein distances for both

the invocation and resource distributions. After that, the

In-Vitro load generator executes the sampled trace by syn-

thesizing function invocation requests to a serverless system

under test.

2 EXISTING FRAMEWORKS AND
METHODOLOGIES

Studying serverless systems without access to production de-

ployments is challenging, due to the lack of visibility into the

software system stack, access to the serverless functions that

run on top of it, or knowledge of their invocation patterns.

Although researchers have introduced several open-source

frameworks [2, 3, 8, 13, 16, 26] to address the first issue, the

lack of insight into the workload code and traffic patterns

remains a problem.

Recently, several serverless providers [22, 27] have re-

leased production traces of function invocations, revealing

invocation traffic patterns as well as the key serverless appli-

cation characteristics, such as functions’ processing duration

and memory characteristics. For instance, the most compre-

hensive trace released by Azure Functions contains tens of

thousands of anonymized functions, the number of invoca-

tions of each function in each minute of a 14-day interval, as

well as the per-function distributions of processing duration

(which accounts for useful execution time on the worker

node) and memory usage. While these traces provide valu-

able insights, they are captured at the scale of thousands

of nodes
1
and lack actual executable workloads. As such,

these traces cannot be used directly to explore serverless

systems research directions, such as scheduling and resource

management policies.

To make evaluating new serverless systems or resource

management policies practical in an academic lab or com-

pany staging cluster, prior works [12, 21, 23] often resort to

synthesizing load based on functions randomly sampled from

a production trace. Others [14] emphasize the skew in func-

tion invocation frequency (often found in real clouds [22, 27])

by choosing one function that accounts for 90% of the total

load and a few functions that account for the remaining 10%.

With such approaches, the resulting load may not accurately

reflect the characteristics of production workloads, which

risks misleading observations and system design decisions.

To reduce the computational requirements of large pro-

duction workloads, researchers explore methodologies for

constructing workload summaries for database queries [10],

1
Assuming each function uses 1 CPU core during its execution, we estimate

that one would need a 10-20 thousand core cluster (at any point in the trace)

to replay the full Azure trace.

https://github.com/vhive-serverless/invitro
https://github.com/vhive-serverless/invitro

Enabling In-Vitro Serverless Systems Research WORDS ’23, October 23, 2023, Koblenz, Germany

GPGPU [28], AI [19], and big data [20]. However, their ap-

proaches rely on access to a production system and/or the

actual workloads. Unfortunately, currently available traces

for serverless applications [22, 27] only contain workload

characteristics — this is common for public traces due to

anonymization challenges. Furthermore, we aim to develop

a methodology that enables analyzing system performance

under various loads and finding the peak system load [15].

To the best of our knowledge, existing methodologies lack

support for stepping through the system load by generat-

ing workload summaries with a monotonically increasing

system load.

3 THE IN-VITRO METHODOLOGY
Here, we define the metric of representativity for server-

less workloads and introduce our approach for synthesizing

representative workload summaries of various scales.

3.1 Workload Summary Representativity
We define a workload summary as a subset of the functions

included in the original trace. We say a workload summary

is representative of an original production workload trace if

its distributions for the key characteristics are statistically
similar to the original trace’s distributions. In the available

serverless cloud traces [22, 27], we identify two key distri-

butions, namely 1) function invocation distribution and 2)

resource usage distribution (described below). However, our

summarization method can be seamlessly extended to ac-

count for an arbitrary set of distributions. To evaluate the

representativity of distributions, we use Wasserstein dis-

tance (WD)
2
as a common metric of statistical similarity.

Invocation distribution: The invocation distribution

captures the distribution of per-function invocation inter-

arrival time (IAT). The invocation distribution is critical to

maintaining representativity as it significantly impacts the

infrastructure state and dynamics (e.g., scheduling decisions),

as shown by prior work [22, 24]. For example, 45% of func-

tions in the Azure trace [22] are invoked less than once

per hour on average while the most invoked 18% of func-

tions account for >99% of invocations. However, rarely in-

voked functions may exhibit high cold-start delays, up to

seconds [24, 26], which can be much higher than the actual

invocation processing duration [9]. Hence, capturing these

diverse invocation patterns is essential to drive research in

efficient serverless infrastructure. We define the invocation

representativity of a workload summary as a WD between

2
Wasserstein distance (WD) is a metric of the distance between two proba-

bility distributions. Informally, if the distributions are interpreted as two

different ways of piling up a fixed amount of dirt, WD is the minimum

amount of dirt moved from one pile to another multiplied by the moving

distance to equalize the two piles.

the distribution of invocations of the functions in the sum-

mary and the distribution of invocations for all functions in

the original trace in a given time interval. We refer to it as

the invocation WD.
Resource usage distribution: The resource distribution

captures the distribution of per-function total resource (CPU

and memory) usage. Similarly to the invocation distribution,

the resource usage distribution is defined per function, but

the number of the function’s invocations arriving in a given

minute is multiplied by the average processing duration and

average memory footprint of that function. The resource dis-

tribution defines CPU and memory usage in the experiment

cluster by the functions in the workload summary. Thus, the

resource distribution is a proxy for the overall load applied

to the studied system by playing the workload summary. We

define the resource representativity of a workload summary

by measuring a WD between the load distribution from the

workload summary and the load distribution from all func-

tions in the original trace in a given time interval. We refer

to this as the resource WD.
Given two workload summaries A and B constructed from

the same original trace, we call A more representative than

B if the arithmetic mean of the invocation and resource WDs

of A is smaller that of B.

3.2 Synthesizing Workload Summaries
3.2.1 In-Vitro methodology overview. The In-Vitromethodol-

ogy comprises two steps: sample generation using the origi-

nal trace and load generation using the collected samples.

Sample generation starts with taking samples across time

to capture diurnal and weekly patterns, i.e., we select all func-

tions with invocations arriving in the sampled time period.

Then, for each sampled time period, the algorithm samples

subsets of functions that are the most representative of the

original trace’s function invocation and resource usage char-

acteristics. To allow studies under a monotonically changing

load, the algorithm generates samples recursively by taking

samples with a smaller number of functions from samples

with a larger number of functions. Below, we elaborate on

the metrics we use for optimizing sample representativity

and the details of the sampling algorithm.

After generating a set of samples with a different num-

ber of functions corresponding to the sampled time period,

the load generator drives performance measurement experi-

ments, where each experiment corresponds to a single load

level. In each experiment, the load generator reconstructs

and steers the invocation traffic from a single sample to the

sample’s functions. The generator captures the functions’

response time, allowing analysts to study overall system per-

formance and compare different systems under the same load.

Furthermore, to evaluate the performance of a system under

WORDS ’23, October 23, 2023, Koblenz, GermanyDmitrii Ustiugov, Dohyun Park, Lazar Cvetković, Mihajlo Djokic, Hongyu Hè, Boris Grot, and Ana Klimovic

different load levels, the load generator can step through the

experiments, monotonically increasing the load by choosing

samples in the increasing order of their size.

3.2.2 In-Vitro Sampler. Listing 1 summarizes our algorithm

for synthesizing workload summaries from a production

trace. We assume the trace consists of a set of functions

and their key attributes: per-function distributions of invo-

cation frequency, execution time on an end server node, and

memory footprint.

1 samples = [] # the resulting array of samples

2

3 for excerpt in full_trace.rand_sample_by_time ():

4 samples[excerpt] = sample_excerpt(excerpt)

5

6 return samples

7

8 def sample_excerpt(original_trace):

9 for size in sample_sizes: # in descending order

10 for t in range(trials_num):

11 if is_first_sample_to_draw ():

12 sample = original_trace.rand_sample(size)

13 else:

14 sample = previous_sample.rand_sample(size)

15

16 candidates.append(sample)

17

18 samples[size] = get_repres_sample(candidates)

19 previous_sample = samples[size]

20

21 return samples

Listing 1: The In-Vitro sampling algorithm

First, the sampling algorithm randomly samples short

trace excerpts, capturing diurnal and weekly patterns. Then,

for each trace excerpt, we construct the first workload sum-

mary of size n by deriving a sample of n functions with all

their attributes from the original trace (LoC 12). The algo-

rithm then recursively derives smaller summaries from that

sample (LoC 14) instead of the original trace until the small-

est desired summary is derived. For each summary size, the

algorithm samples the functions trials_num times and then

chooses a single most representative sample (LoC 18), i.e.,

the one with the smallest mean of bothWDs. Note that when

deriving each individual sample, the algorithm is equivalent

to random sampling. However, in contrast to vanilla random

sampling, the algorithm chooses the most representative

sample from a set of samples based on WDs of each sample

in the set.

Deriving summaries recursively enables In-Vitro to gener-

ate a monotonically changing load. A large summary has a

higher load (i.e., uses more CPU and memory on end server

nodes) than any smaller summary derived from it because

the former (large summary) includes the same functions plus
some additional ones compared to the latter (smaller sum-

mary). In §4.2, we show that it is sufficient to sample a small

number of summaries of the same size to derive a highly

representative workload summary using the WD metric and

filter out summaries with low representativity.

Users can configure the sample trace duration. Since cloud

providers can spawn instances of functions in less than one

second [24] and tear down instances after minutes of inactiv-

ity [24]. Serverless infrastructure usually tracks instance ac-

tivity with a window of 60 seconds by default [1]. Hence, one

can sample measurement time periods longer than several

minutes from the original trace without losing representativ-

ity. In our experiments, we conservatively choose to sample

15-minute intervals, each preceded by a 20-minute warm-up

interval, the length of which we empirically choose to yield

performance measurements reproducible across experiments

with the same sample.

3.2.3 In-Vitro Load Generator. To issue invocations from

the trace, we develop a load generator that takes memory

usage and runtime duration from the sampled trace as inputs

to model serverless function workloads. Upon placement of

each synthesized function, the load generator requests the

maximum memory amount the function uses according to

the data in the trace from the cluster manager. The synthe-

sized function’s code contains a busy loop that guarantees

the consumption of CPU cycles for the requested runtime

duration calibrated to the host node’s CPU frequency a priori.

If the trace does not contain exact timestamps of function

invocations (e.g., the Azure Function trace only contains the

invocation count per minute for each function), the load

generator reconstructs inter-arrival times conforming to a

Poisson distribution at a millisecond scale. The synthesizer

determines the exact timestamps when each function has to

be invoked and issues a request with the execution time as

each invocation’s parameters. The synthesizer also measures

each invocation’s end-to-end latency as time from invocation

to response.

4 EVALUATION
Wenow evaluate the representativity of workload summaries

synthesized with the In-Vitro methodology compared to the

summaries obtained via vanilla random sampling. We choose

uniform random sampling across all functions in the trace as

a baseline because this approach is commonly used in prior

works on serverless computing [12, 14, 21, 23] sampling

captures the high diversity of serverless function character-

istics, e.g., including hot and cold functions, and short and

long-running functions. We then measure serverless cluster

performance under various loads with workload summaries

obtained with In-Vitro and random sampling. We conclude

Enabling In-Vitro Serverless Systems Research WORDS ’23, October 23, 2023, Koblenz, Germany

by studying the efficiency of serverless autoscaling policies

with our methodology.

4.1 Experiment Setup
For the evaluation, we use 21 xl170 nodes in CloudLab[11]

running stock Ubuntu 20.04 on a 10-core 2.4 GHz Intel E5-

2640 CPUwith 64GBDRAMand a 25GbNIC.We use vHive [26]

v1.5, a Kubernetes/Knative-based serverless stack, as a plat-

form representative of a real-world serverless deployment.

One node in the cluster is dedicated exclusively to Kubernetes-

specific services, Knative services, and cluster monitoring

components (Prometheus [5]); another node hosts the work-

load synthesizer. Other (’worker’) nodes run only synthe-

sized functions.We configure Knative to use the concurrency-

based autoscaling policy unless specified otherwise. We use

the Azure Functions trace [22], pre-processed to exclude

malformed entries, for synthesizing summaries.

To compare the performance of two systems deployed in

a fixed-size cluster, one needs to evaluate the responsiveness

of these systems while sweeping the overall system load.

Serverless traces [22, 27] contain heterogeneous functions

with various execution times, inter-arrival times, etc., so the

analysts need a way to reason about overall system perfor-

mance in a studied scenario. Hence, we define the overall

system slowdown as a function of the overall load, evaluat-

ing the responsiveness of the studied system under various

loads. We measure slowdown as a geometric mean of all

per-function slowdowns in the given time interval.
3
The

per-function slowdown is defined as the geometric mean

of the function’s per-invocation slowdowns, each of which

is the measured end-to-end response time divided by the

processing duration of that invocation as specified in the

trace. Finally, we define the load in the studied serverless sys-

tem as the number of functions in a workload summary. By

design of the recursive sampling algorithm (§3.2), workload

summaries with more functions always apply a higher load

on the evaluated system than the summaries with a fewer

number of functions.

4.2 Sample Representativity Analysis
Figure 1 compares samples’ representativity with the In-Vitro

methodology and samples obtained with uniform random

sampling. We measure representativity as the arithmetic

mean of invocation WD and resource WD (§3.1). For both

sampling methods, we perform five sampling runs for each

sample size and plot the characteristics of the sample with the

median WD. In each of the five runs of the In-Vitro sampling

3
Slowdown in our definition can be considered a relative alternative to

service level objectives, commonly defined as response time percentiles[15,

17]. Instead of the geometric mean, the slowdown can also be defined as a

percentile of per-function slowdowns.

102 103 104

Sample Size

0

5

10

15

20

W
as

se
rs

te
in

 D
ist

an
ce

(a) Invocation WD

102 103 104

Sample Size

0

5

10

15

20
4 trials
8 trials
16 trials
128 trials
Random

(b) Resource WD

Figure 1: In-Vitro and random sampling methods’ WD.

100 200 300 400
Number of Functions

20

40

60

80

100

CP
U

Us
ag

e
(%

) In-Vitro
Random

(a) CPU Utilization

100 200 300 400
Number of Functions

2

3

Sl
ow

do
wn

In-Vitro
Random

(b) Slowdown

Figure 2: Aggregate CPU utilization (averaged across
all worker nodes during a run) and aggregate slow-
down when using the In-Vitro summaries and random
samples.

for a given sample size, we choose the best sample after

several trials and choose the sample run with the median

WD.

Figure 1 shows that the In-Vitro methodology generates

samples with lower invocation and resource-usageWDs than

random sampling across sample sizes. Indeed, the vanilla ran-

dom samples have the invocation WD of up to 27 and the

resource WD of up to 24. In contrast, the In-Vitro method

generates samples with the invocation WD <12, and the

resource WD <4. Overall, In-Vitro provides samples with

up to 10× lower resource WD than random samples (2.3 vs

23.6). Also, In-Vitro’s WD converges monotonically when de-

creasing the sample size (whereas random sampling exhibits

a high WD variation) because In-Vitro filters out functions

with an outlier invocation arrival rate, processing duration

or CPU/memory usage.

4.3 Analysis with Load Sweep
Figure 2 shows how the cluster’s overall slowdown and av-

erage CPU utilization vary when sweeping the load by in-

creasing the size of In-Vitro and random samples. Note that

with the increase of the size of randomly generated samples,

the CPU load (Figure 2a) may increase or decrease because

WORDS ’23, October 23, 2023, Koblenz, GermanyDmitrii Ustiugov, Dohyun Park, Lazar Cvetković, Mihajlo Djokic, Hongyu Hè, Boris Grot, and Ana Klimovic

100 200 300 400
Number of Functions

1

3

5

Sl
ow

do
wn

Concurrency-Based
RPS-Based

Figure 3: Slowdown with each autoscaling policy.

each sample is drawn independently from the original trace.

For example, the 300-function sample comprises many short-

running and rarely-invoked functions whose collective CPU

load is lower than that of the 200-function sample. In contrast,

for In-Vitro, summaries display a monotonically increasing

CPU load with an increasing number of functions. Figure 2b

shows that load variability across samples affects the over-

all slowdown, making it difficult to reason about system

behavior under low and high loads.

4.4 Comparing Autoscaling Policies
We show an example use case for applying the In-Vitro

methodology for serverless system research and design space

exploration. We use In-Vitro workload summaries to com-

pare the performance of two autoscaling policies available in

the Knative [4] serverless system: concurrency-based (used

by default) and request-per-second-based (RPS-based) au-

toscaling. The former makes scaling decisions based on the

sum of the number of invocations waiting and currently pro-

cessed in the system, whereas the latter policy relies on each

function’s estimated invocation arrival rate and execution

time. As before, we gradually increase the function count to

sweep the load on the cluster and measure slowdown.

Figure 3 shows that the concurrency-based scaling policy

delivers consistently higher performance (i.e., up to 1.7×
lower slowdown with the same workload summaries) than

the RPS-based policy. However, we observe that the concurrency-

based policy uses 2.2×more CPU resources than the RPS pol-

icy (not shown in the figure), indicating the performance-cost

trade-off. The intuition for these results is that the RPS-based

scaling policy only reacts to the incoming rate of requests,

thus it cannot react to the state of the system (e.g., build-up

of queues) as fast as the concurrency-based policy, hence

causing higher slowdowns of function invocations. In con-

trast, the concurrency-based policy drives scaling based on

queue occupancy, naturally depleting the queues faster than

its counterpart.

5 EARLY EXPERIENCEWITH IN-VITRO
AND FUTUREWORK

In-Vitro aims to introduce a standard method for compar-

ing different systems under load generated from the same

standard trace
4
and open many opportunities for evaluating

serverless systems of different kinds.

In our experience, In-Vitro has shown its high workload

compression efficiency: in our experience, 10-20 cluster nodes

suffice to observe the effects of queuing on various control

and data plane components in a Knative/Kubernetes-based

distributed system. Also, In-Vitro has a large application

scope. For instance, apart from black-box serverless system

evaluation, we have been actively using In-Vitro to study the

implications of control-plane traffic on the cluster manager’s

internal services in Knative and Kubernetes. We also use In-

Vitro to study system support for new serverless applications,

such as AI-as-a-Service including elastic machine-learning

inference and LLM prompt-tuning systems, the application

traffic in which is similar to the Azure Functions trace [18].

In future, we plan to compare our observations in a small-

scale research setting to the phenomena observed in large-

scale commercial platforms, which we plan to study by play-

ing the In-Vitro traces on functions deployed in real providers,

such as AWS Lambda, Azure Functions, Google CloudRun,

Alibaba Function Compute. Thus, In-Vitro can complement

STeLLAR, our previous work on black-box benchmarking of

various subsystems of commercial clouds [25].

The scope of serverless computing has been expanding

dramatically, so we anticipate that In-Vitro would help re-

searchers in other emerging areas, such as cloud-edge sys-

tems [29] and Industry 4.0 [7].

6 CONCLUSION
Exploring the design of serverless systems requires access

to representative workloads. While recently released pro-

duction traces contain useful statistics of real workloads, to

foster system innovation, they require a methodology for

generating representative workload summaries to run ex-

periments in a small-scale research setting. We introduce a

methodology to derive representative workload summaries

at configurable scales from production traces and show the

utility of the toolchain we release by analyzing two autoscal-

ing policies’ performance.

ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for their in-

sightful feedback, Tom Kuchler for conducting early studies

of the invocation traces, Marios Kogias and the EASL lab for

their valuable comments and advice.

4
We release the standard sampled traces on GitHub: https://github.com/

vhive-serverless/invitro.

https://github.com/vhive-serverless/invitro
https://github.com/vhive-serverless/invitro

Enabling In-Vitro Serverless Systems Research WORDS ’23, October 23, 2023, Koblenz, Germany

REFERENCES
[1] Additional Autoscaling Configuration for Knative Pod Autoscaler.

Available at https://knative.dev/docs/serving/autoscaling/kpa-specific/

#stable-window.

[2] Fission: Open Source, Kubernetes-Native Serverless Framework. Avail-

able at https://fission.io.

[3] Fn project. Available at https://fnproject.io.

[4] Knative. Available at https://knative.dev.

[5] Prometheus. Available at https://prometheus.io.

[6] Transaction Processing Performance Council. Available at https://

www.tpc.org.

[7] What are Industry 4.0, the Fourth Industrial Revolution, and 4IR?

Available at https://www.mckinsey.com/featured-insights/mckinsey-

explainers/what-are-industry-4-0-the-fourth-industrial-revolution-

and-4ir.

[8] Apache. OpenWhisk. Available at https://openwhisk.apache.org/.

[9] Datadog. The State of Serverless 2021. Available at https://www.

datadoghq.com/state-of-serverless-2021.

[10] Deep, S., Gruenheid, A., Koutris, P., Naughton, J. F., and Viglas,

S. Comprehensive and Efficient Workload Compression. Proc. VLDB
Endow. 14, 3 (2020), 418–430.

[11] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E.,

Stoller, L., Hibler, M., Johnson, D., Webb, K., Akella, A., Wang,

K.-C., Ricart, G., Landweber, L., Elliott, C., Zink, M., Cecchet,

E., Kar, S., and Mishra, P. The Design and Operation of CloudLab.

In Proceedings of the 2019 USENIX Annual Technical Conference (ATC)
(2019), pp. 1–14.

[12] Fuerst, A., and Sharma, P. FaasCache: Keeping Serverless Computing

Alive with Greedy-Dual Caching. In Proceedings of the 26th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVI) (2021), pp. 386–400.

[13] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V.,

Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. Serverless Com-

putation with OpenLambda. In 8th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud) (2016).

[14] Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. Hermod: Principled

and Practical Scheduling for Serverless Functions. In Proceedings of the
2022 ACM Symposium on Cloud Computing (SOCC) (2022), pp. 289–305.

[15] Kogias, M., Mallon, S., and Bugnion, E. Lancet: A Self-Correcting

Latency Measuring Tool. In Proceedings of the 2019 USENIX Annual
Technical Conference (ATC) (2019), pp. 881–896.

[16] Kubeless. Kubeless: The Kubernetes Native Serverless Framework.

Available at https://kubeless.io.

[17] Leverich, J., and Kozyrakis, C. Reconciling High Server Utilization

and Sub-Millisecond Quality-of-service. In Proceedings of the 2014
EuroSys Conference (2014), pp. 4:1–4:14.

[18] Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin, X., Huang, Y.,

Chen, Z., Zhang, H., Gonzalez, J. E., and Stoica, I. AlpaServe:

Statistical Multiplexing with Model Parallelism for Deep Learning

Serving. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2023), USENIX Association.

[19] Liang, M., Fu, W., Feng, L., Lin, Z., Panakanti, P., Zheng, S., Srid-

haran, S., and Delimitrou, C. Mystique: Enabling Accurate and

Scalable Generation of Production AI Benchmarks. In Proceedings of
the 50th Annual International Symposium on Computer Architecture,
ISCA 2023, Orlando, FL, USA, June 17-21, 2023 (2023), Y. Solihin and

M. A. Heinrich, Eds., ACM, pp. 37:1–37:13.

[20] Panda, R., Zheng, X., Gerstlauer, A., and John, L. K. CAMP: Accu-

rate Modeling of Core and Memory Locality for Proxy Generation of

Big-Data Applications. In 2018 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2018, Dresden, Germany, March 19-23,
2018 (2018), J. Madsen and A. K. Coskun, Eds., IEEE, pp. 337–342.

[21] Saxena, D., Ji, T., Singhvi, A., Khalid, J., and Akella, A. Memory

Deduplication for Serverless Computing with Medes. In Proceedings
of the 2022 EuroSys Conference (2022), pp. 714–729.

[22] Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P., Cooke,

J., Laureano, E., Tresness, C., Russinovich, M., and Bianchini, R.

Serverless in the Wild: Characterizing and Optimizing the Serverless

Workload at a Large Cloud Provider. In Proceedings of the 2020 USENIX
Annual Technical Conference (ATC) (2020), pp. 205–218.

[23] Singhvi, A., Balasubramanian, A., Houck, K., Shaikh, M. D.,

Venkataraman, S., and Akella, A. Atoll: A Scalable Low-Latency

Serverless Platform. In Proceedings of the 2021 ACM Symposium on
Cloud Computing (SOCC) (2021), p. 138–152.

[24] Ustiugov, D., Amariucai, T., and Grot, B. Analyzing Tail Latency

in Serverless Clouds with STeLLAR. In Proceedings of the 2021 IEEE
International Symposium on Workload Characterization (IISWC) (2021),
pp. 51–62.

[25] Ustiugov, D., Amariucai, T., and Grot, B. Analyzing Tail Latency

in Serverless Clouds with STeLLAR. In IEEE International Symposium
on Workload Characterization (IISWC) (2021).

[26] Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., and Grot, B.

Benchmarking, Analysis, and Optimization of Serverless Function

Snapshots. In Proceedings of the 26th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS-XXVI) (2021), pp. 559–572.

[27] Wang, A., Chang, S., Tian, H., Wang, H., Yang, H., Li, H., Du, R.,

and Cheng, Y. FaaSNet: Scalable and Fast Provisioning of Custom

Serverless Container Runtimes at Alibaba Cloud Function Compute.

In Proceedings of the 2021 USENIX Annual Technical Conference (ATC)
(2021), pp. 443–457.

[28] Yu, Z., Eeckhout, L., Goswami, N., Li, T., John, L. K., Jin, H., Xu,

C., and Wu, J. GPGPU-MiniBench: Accelerating GPGPU Micro-

Architecture Simulation. IEEE Trans. Computers 64, 11 (2015), 3153–
3166.

[29] Zhang, J., Jin, C., Huang, Y., Yi, L., Ding, Y., and Guo, F. KOLE:

Breaking the Scalability Barrier for Managing Far Edge Nodes in Cloud.

In Proceedings of the 2022 ACM Symposium on Cloud Computing (SOCC)
(2022).

https://knative.dev/docs/serving/autoscaling/kpa-specific/#stable-window
https://knative.dev/docs/serving/autoscaling/kpa-specific/#stable-window
https://fission.io
https://fnproject.io
https://knative.dev
https://prometheus.io
https://www.tpc.org
https://www.tpc.org
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-are-industry-4-0-the-fourth-industrial-revolution-and-4ir
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-are-industry-4-0-the-fourth-industrial-revolution-and-4ir
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-are-industry-4-0-the-fourth-industrial-revolution-and-4ir
https://openwhisk.apache.org/
https://www.datadoghq.com/state-of-serverless-2021
https://www.datadoghq.com/state-of-serverless-2021
https://kubeless.io

	1 Introduction
	2 Existing Frameworks and Methodologies
	3 The In-Vitro Methodology
	3.1 Workload Summary Representativity
	3.2 Synthesizing Workload Summaries

	4 Evaluation
	4.1 Experiment Setup
	4.2 Sample Representativity Analysis
	4.3 Analysis with Load Sweep
	4.4 Comparing Autoscaling Policies

	5 Early Experience with In-Vitro and Future Work
	6 Conclusion
	References

