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Abstract

Serverless computing enables developers to deploy applications

as work�ows of functions that invoke one another, with cloud

providers handling autoscaling and routing. However, serverless

platforms lack e�cient mechanisms for cross-function data trans-

fers, which hinders the performance of data-intensive applications.

Current solutions rely on intermediary services like AWS S3 or

ElastiCache(EC), leading to signi�cant cost ine�ciencies—storage

costs can account for 24-99% of the total execution bill.

Zipline addresses this challenge with a fast, API-compatible data

communication method enabling direct function-to-function trans-

fers. Zipline bu�ers data in the sender function’s memory and trans-

mits only the references to the dynamically selected receiver, which

pulls the data directly from the sender’s memory. While eliminating

the need for intermediary services, it also integrates seamlessly

with existing autoscaling infrastructure, preserving function invo-

cation semantics while signi�cantly reducing costs and latency. In a

vHive/Knative prototype on AWS EC2, Zipline achieves 2-5× lower

costs & 1.3-3.4× faster execution times compared to S3. Against

EC, Zipline cuts costs by 17-772× while improving performance by

2-5%. Zipline demonstrates a cost-e�ective and high-performance

solution for data-intensive serverless applications.
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1 Introduction

Serverless functions are stateless and ephemeral, requiring inter-

function communication to pass intermediate state. Typically, a

producer function invokes consumer functions, passing data inputs.

However, the consumer instances are dynamically assigned by

the cloud provider’s load balancer and autoscaler, making direct

communication challenging. Data transfers can be substantial, often

tens of MBs, as seen in applications like video analytics [24, 25, 51,

52], data analytics [46, 49, 50], and ML [29].

The common programming model for data communication is

object-centric, using an intermediate external servicewith a put()/get()

interface. This service can be a storage service (e.g., AWS S3, Google

Cloud Storage) or an in-memory cache (e.g., AWS ElastiCache). The

producer stores the data, invokes the consumer, which then re-

trieves the data from storage. This indirection via storage services

introduces latency and additional costs.

Researchers have proposed solutions to improve serverless com-

munication e�ciency. Some seek to improve the performance of

storage-based transfers using tiered storage, such as combining

an in-memory cache layer (e.g., EC) with a cold storage layer (e.g.,

S3) [42, 45, 51, 56]. While tiered storage can improve performance

over a single storage layer (or cost over a single in-memory cache

layer), the disadvantages of through-storage indirection remain.

We �nd that serverless architectures using through-storage trans-

fers, such as AWS S3 or multi-tier services, incur prohibitively high

costs for storing transmitted data. Even with perfect garbage collec-

tion, intermediate bookkeeping costs dominate execution costs for

data-intensive applications. For instance, in a MapReduce shu�e

phase, data transmission via S3 and EC can account for 70% to over

99% of total processing costs.

By studying the production traces from Azure Functions [51], we

make the following key observation: 75% of data objects transmitted

across functions must be bu�ered for only 30 seconds or less. In

contrast, a function instance’s lifetime (e.g., theminimumkeep-alive

period of an idle instance before serverless infrastructure tears it

down) spans to manyminutes [9, 53]. Hence, the function instances’

lifetime signi�cantly exceeds the transmitted data’s lifetime.

We exploit the disparity between the data and instances’ lifetimes

and introduce Zipline1 (ZL), a serverless communication substrate

1The Zipline code is available at https://github.com/ease-lab/zipline.

https://doi.org/10.1145/3721465.3721866
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721465.3721866
https://github.com/ease-lab/zipline
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that allows direct communication between two function instances

in a manner that is �exible and compatible with the autoscaling

infrastructure used by cloud providers. ZL preserves the existing

API and invocation semantics of serverless functions while avoiding

the need for intermediate storage for arbitrarily-sized data transfers.

At the heart of ZL is an explicit separation of the control plane

used for function invocation, which is tightly integrated with the

autoscaling infrastructure, from the data transfer itself. In simplest

terms, with ZL, the producer function bu�ers the data that needs

to be transferred in its memory and sends a reference to the data

inlinedwith the invocation to the consumer function. The consumer

then directly pulls the data from the producer’s memory. More

concretely, ZL de�nes a short-lived namespace of objects with

the same lifetime as the function instance. Subsequent function

instances can access this namespace through references that do not

expose the underlying infrastructure to the user code.

ZL naturally supports a variety of inter-function communica-

tion patterns, including producer-consumer, scatter (map), gather

(reduce), and broadcast. Compared to through-storage transfers,

ZL avoids high-latency data copies to and from a storage layer and

the associated monetary cost of storage usage. Critically, ZL is fully

compatible with the autoscaling infrastructure and requires mini-

mal modi�cations at the endpoints of the existing control plane.

We prototype ZL in Knative [3], by extending its queue-proxy

components with ZL support. We evaluate our proposal by de-

ploying a ZL-enabled vHive cluster in AWS EC2. Using real-world

applications, we show that ZL delivers 2-5× lower cost and superior

performance versus transfers via S3 storage (i.e., cheapest among

existing solutions) and EC in-memory cache (i.e., fastest among

prior works) for all the above communication patterns in serverless.

The main contributions of our work are as follows:

• We demonstrate that through-storage communication incurs

high costs, making up 24-99% of total expenses for data-intensive

serverless applications.

• We observe that function instances live signi�cantly longer than

the data they transmit, suggesting the use of instance memory for

bu�ering the transmissions.

• We introduce ZL, which separates control and data paths, al-

lowing direct data transfer from producer to consumer memory,

supporting various communication patterns and compatible with

autoscaling.

• We show ZL’s e�ciency and cost-e�ectiveness, outperforming

S3 by 1.3-3.4× with 2-5× cost savings, and surpassing EC by 2-5%

while reducing costs by 17-772×.

2 Background and Motivation

Below we describe the modern serverless cloud architectures and

programming models for data-intensive applications and evaluate

the associated performance and cost overheads.

2.1 Serverless Computing and Autoscaling

The serverless paradigm divides responsibilities between the pro-

grammer and the infrastructure. The programming model uses

functions as the core abstraction and function instances as units

of scaling. Developers can deploy applications without managing
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Figure 1: Operation of serverless autoscaling infrastructure.

system con�guration or cloud resources, as the serverless infras-

tructure automatically adjusts the number of function instances

based on tra�c.

We describe the serverless autoscaling infrastructure (Fig. 1)

using the Knative [3] terminology. The autoscaling infrastructure

aims to achieve two objectives: (1) respond to load changes by

spawning new function instances when the load increases and

shutting down idle instances when the load drops, and (2) minimize

queuing latency by balancing the load across active instances.

Instance scaling and load-balancing decisions rely on utilization

metrics from active function instances, gathered by the queue-proxy

component, which forwards incoming requests and reports metrics

to the autoscaler. The autoscaler monitors the load and implements

the scaling policy. To balance the load, serverless clouds use a load

balancer (referred to as the activator in Knative) to steer requests

to instances. If no active instances are available or all are busy, the

activator requests new instances from the autoscaler, which then

spawns new instances while the activator bu�ers the requests. Once

the instances are up, the activator directs the requests to them.

Together, the queue proxy, autoscaler, and load balancer enable

serverless function autoscaling, ensuring scalability for developers

and resource e�ciency for cloud providers.

2.2 Data-Intensive Applications in Serverless

Data-intensive applications are prevalent in today’s serverless clouds [24,

25, 29, 46, 49–52]. These applications require rapid state commu-

nication between processing stages (i.e., functions) in a work�ow.

Typically, serverless functions handle single stages (e.g., map and

reduce) with instances managing individual state pieces [24, 31, 32].

This allows developers to leverage available compute resources

without managing autoscaling or resource allocation.

The challenge lies in enabling fast state communication (referred

to as objects) across functions while maintaining serverless bene�ts

like elasticity and cost-e�ciency. Direct communication via tradi-

tional POSIX APIs (e.g., sockets) could o�er high performance but

would require custom autoscaling and data-partitioning solutions,

negating serverless advantages. Instead, existing data-intensive

serverless applications use storage services (e.g., cloud storage or in-

memory cache) for object transfers via put()/get()APIs [23, 51].2

We term these methods as through-storage transfers.

2Small data objects can be passed inline, such as AWS Lambda’s support for objects
smaller than 256KB and 6MB for asynchronous and synchronous invocations, respec-
tively. However, through-storage transfers are more common in practice.
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Figure 2: The cost breakdown for real-world data-intensive

multi-function applications (§5.0.5), namely Video Ana-

lytics (VID), Stacking Ensemble Training (SET), and Map-

Reduce (MR), when performing data transfers through AWS

S3 and ElastiCache (EC). The numbers show the cost values

in (in*(� × 10
−6) for compute and storage expenses.

2.3 Through-Storage Transfers and Their Cost

Through-storage communication in serverless architectures incurs

performance and �nancial overhead. The �nancial cost includes

charges for each Get()/Put() operation and the storage lease cost,

proportional to the duration and size of data stored remotely.

Prior research has explored cost-performance trade-o�s in stor-

age solutions for data-intensive serverless applications. These in-

clude using conventional storage for cost e�ciency, in-memory

cache for high performance, or multi-tier systems combining both.

For example, Locus [50] utilizes AWS ElastiCache (EC) for shu�ing

and S3 for cold storage. Solutions like Pocket [32] and SONIC [42]

adopt control-plane mechanisms to dynamically multiplex storage

tiers based on application needs. Other systems, such as Faa$T [51],

Cloudburst [56], and OFC [45], employ key-value stores for dis-

tributed caching. These approaches introduce direct storage costs

(operations and leases) and indirect computational costs due to

storage latency impacting function execution time.

Even with the cheapest storage solutions, data-intensive server-

less applications often face disproportionate storage costs. Using

AWS pricing models, we estimate the cost of bu�ering data in S3

and EC under conservative assumptions: immediate deallocation

after retrieval and no overprovisioning. However, practical con-

straints—like S3’s minimum expiration time of one day and EC’s

1 GB metering minimum—result in higher real-world costs. Fig. 2

illustrates that storage accounts for 24–70% and 94–99% of overall

costs when using S3 and EC, respectively.

These �ndings demonstrate that through-storage architectures

are economically impractical for data-intensive applications. While

multi-tier systems narrow the performance gap between in-memory

and cloud storage, the latter remains the cost-optimal but slowest

tier, contributing signi�cantly to both cost and tail latency, as high-

lighted in prior studies [58].

3 Zipline Communication

3.1 Design Insights

We exploit three insights enabling a serverless communication

model, which, in the common case, obviates the need for through-

storage transfers.

Figure 3: CDFs of the time duration between saving a data

object in storage and its last retrieval, based on Azure Blob

Traces [51]. Note the logarithmic scale on the horizontal axis.

Figure 4: Zipline architecture overview.

API Call Description

rsp := invoke(URL, obj) Invoke a function

ref := put(obj, N) Bu�er an object locally

obj := get(ref) Fetch a remote object

Table 1: Zipline API description.

Our �rst insight is to separate control (function invocation) and

data (transfer) paths without impacting the autoscaling infrastruc-

ture. The challenge is doing sowithout resorting to a storage service,

which is what curent through-storage transfers rely on. We address

this challenge with the help of the second insight.

The second insight is that the data transferred between instances

are ephemeral, with lifetimes on the order of a few seconds. Us-

ing the Azure Blob Traces [51], we analyze the time between an

object produced by one function and its last retrieval by another

function of the same application. Fig. 3 shows that 75% of the data

objects transferred across functions are consumed within 30 sec-

onds. Hence, the data lifetime is much shorter than the keep-alive

period of serverless functions (which is typically in the order of

minutes to maximize the likelihood of a warm invocation [9, 53]).

Based on the above, we draw one �nal insight: instead of using

a storage service to communicate data across function instances, a

producer instance can simply bu�er the data in its own memory

and have the consumer instance pull from it. We note that most

language runtimes require bu�ering the transmitted object in a

memory bu�er before calling the Put() API of the storage service,

so the system only needs to provide a way to pass a pointer to

that bu�er to the target consumer instance. This insight forms the

foundation for Zipline, presented next.

3.2 Design Overview

We introduce Zipline (ZL), a serverless-native data communication

fabric that meets all �ve serverless communication requirements:

high performance, compliance with existing serverless function
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invocation semantics, compatibility with autoscaling, and standard

data-transfer APIs.

Following the insights from Sec. 3.1, ZL separates function invo-

cation into control and data planes. The control plane, unchanged,

matches the existing serverless architecture (Fig. 1), allowing au-

toscaling to balance loads by directing invocations to the least-

loaded instances. It carries only control messages. The data plane

handles object transfers. In essence, a producer function instance in

ZL bu�ers data in its memory and sends a reference to the consumer

function(s). The consumer(s) then pull the data directly from the

producer’s memory. This replaces push-based data transfers with a

pull-based approach after the control plane has made its decisions.

Fig. 4 illustrates ZL operation. Consider two serverless functions,

a producer and a consumer, each with multiple instances. The

producer invokes the consumer function, passing a data object as

an argument. Unlike existing systems, in ZL, consumer function

invocations go to the activator separately from their corresponding

objects 1 , which remain bu�ered at the source. The activator,

after consulting the autoscaler, selects a consumer instance and

forwards the invocation 2 . Upon receiving the invocation, the

consumer instance pulls the object from the producer instance 3

using the reference in the invocation message.

3.2.1 Zipline Programming Model. The ZL programming model

features a minimalist yet expressive API (Table 1) that supports

essential communication patterns: invoking a function, scattering

and broadcasting objects to multiple consumers, and gathering out-

puts from several functions. The API is compatible with production

cloud APIs like AWS Lambda and S3’s Boto3 [15].

ZL supports both blocking and non-blocking interfaces. The

invoke() call invokes a function by its URL, passing a binary data

object obj by value, with the object bu�ered at the producer side

until the consumer instance pulls it. For non-blocking transfers,

ZL uses put() and get() calls, similar to a key-value store inter-

face. The producer can �nish the invocation before the consumer

retrieves the object.

ZL introduces references as �rst-class primitives to decouple

function invocation and data transfer. When put() is called, the

runtime returns a reference to the object, which the consumer can

retrieve using get(). Each reference is associated with a speci�ed

number of retrievals N and includes a ZL ID to uniquely identify

objects within the same work�ow.

This model allows seamless porting of serverless applications,

such as those for AWS Lambda or Knative, with corresponding

wrapper functions. We implemented ZL SDKs for Python and

Golang and deployed them in a Knative cluster to demonstrate

the API’s portability.

3.2.2 Zipline Semantics. ZL complies with at-most-once seman-

tics and can be extended to at-least-once semantics using exist-

ing serverless infrastructure with minimal modi�cations. Modern

serverless platforms like AWS Lambda and Azure Functions provide

at-most-once invocation semantics [26, 34, 36], ensuring an invoca-

tion executes no more than once, even in case of failures.3 Providers

3Users can achieve at-least-once semantics by combining at-most-once primitives with
retry logic. Prior work also demonstrates constructing exactly-once semantics [36].

Figure 5: Zipline operation in a one producer one consumer

scenario (only the request path is shown). Dashed arrows

show the control plane, solid lines show the data plane, and

the thick solid lines show data streaming in the data plane.

expose runtime errors to user logic for handling [16, 17, 19, 44]. Er-

ror handling varies based on function composition, either as direct

chains or asynchronous work�ows managed by orchestrators like

AWS Step Functions [14] or Azure Durable Functions [43]. Failures

may require re-executing several functions, necessitating the user

to pass context throughout the work�ow.

3.2.3 Zipline Error Handling . In a two-function work�ow, the life-

time of a ZL object is tied to the producer instance. If the producer

shuts down, all its objects are de-allocated immediately. For block-

ing invocations (invoke()), the producer waits for the consumer’s

response and may re-invoke if an error occurs. For non-blocking

invocations, a ZL transfer may fail if the producer instance is ter-

minated before the consumer retrieves the object. The consumer

receives an error on get() and must re-invoke the work�ow from

the producer. The consumer should forward this error to the orches-

trator or driver function to re-invoke the producer with the original

arguments. For instance, AWS Step Functions allows de�ning cus-

tom fallback functions for error handling [17]. Providers could

enhance ZL error handling by backing up non-retrieved objects to

cloud storage before instance shutdown, converting ZL references

to storage service keys. The consumer would �rst attempt a regular

ZL retrieval, followed by a storage service retrieval if needed. If ZL

errors persist, the infrastructure can disable ZL for those functions.

4 Implementation

We prototype Zipline (ZL) in vHive [59] using the Knative model [3].

4.1 Zipline Prototype in vHive/Knative

4.1.1 ZL So�ware Development Kit (SDK). ZL uses an SDK to

bridge user logic with provider components for data transfer. At

the producer side, the SDK splits the invocation request into a con-

trol message and an object (the data). It creates a ZL reference,

an encrypted string containing the pod’s IP address and a unique
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object key, and adds it to the gRPC request header. This encryption

ensures IP addresses remain hidden from user code.

At the consumer side, the SDK reconstructs the original request

by combining the control message and the retrieved object, then

invokes the consumer function as with the standard serverless API.

4.1.2 Control and Data Planes. ZL uses gRPC [2] for the control

plane and for the data plane, we choose the high-performance

Cap’n Proto [1] RPC fabric. This fabric runs directly on top of TCP,

delivering higher performance when compared to gRPC, whose

performance is limited by HTTP compatibility.

4.1.3 Provider Components Extension. Weextend the Knative queue

proxy (QP) for object bu�ering (§2.1). QP is an auxiliary per-function

provider container deployed in the same pod as the function server.

The added logic increases the QP memory footprint by 2MB.

The ZL architecture is general and can be easily ported to popu-

lar serverless platforms like AWS Lambda and Google Cloud Run.

Google Cloud Run is based on Knative and shall support ZL with

minimal changes [7]. AWS o�ers Lambda Extensions that allow

tools to execute custom logic before and after function invocations,

enabling use cases like diagnostics, instrumentation, and con�gu-

ration [6]. In the future, AWS could potentially release extensions

that provide functionality similar to Zipline.

4.2 Zipline Operation

4.2.1 ZL invoke() Operation. Fig. 5 illustrates the ZL request

path during an invoke() call: 1 The caller function invokes the

SDK. 2 The SDK splits the request into a ZL object and a control

plane message containing the object reference. 3 The SDK sends

the control message to the activator and 4 stores the object in

a bu�er for the consumer’s QP (QPcon). 5 The activator selects

the consumer instance and forwards the control message to the

consumer’s QP (QPcon). 6 QPcon decrypts the reference, extracts

the IP address and object key, and requests the data from the pro-

ducer’s SDK via Cap’n Proto RPC. 7 The producer’s SDK sends

the data to QPcon and deallocates the object. 8 QPcon forwards

the object to the SDK, which reconstructs the original request, and

9 invokes the function handler. If the response is small, it follows

the reverse control plane path through the QPs and the activator.

4.2.2 ZL get() / put() Operation. While invoke() is synchro-

nous, ZL’s put() and get() are asynchronous. The key di�erence

is that put() returns a ZL reference for the object, which the pro-

ducer can pass to any function within the same user domain. The

consumer retrieves the object by calling get() with the reference,

prompting the SDK to fetch the object via a Cap’n Proto RPC re-

quest directly from the producer instance. The same technique is

used for large responses, where the consumer sends a reference

and the producer fetches the object.

4.2.3 ZL Flow Control. Cap’n Proto RPC, built on TCP, inherently

supports �ow control, requiring no changes to ZL logic. If transmit-

ted objects exceed available bu�ers, transfers pause, causing the

user code to block in the ZL API call.

5 Methodology

5.0.1 Evaluation Platform. We evaluate Zipline (ZL) on a cluster

of AWS EC2 m5.16xlarge instances in ‘us-west-1‘, ensuring low

access time to AWS S3 similar to [32, 42, 63]. Each instance features

a 64 core Intel Xeon Platinum 8000 series 3 processor, 256GB RAM,

and a 20Gb/s NIC. Pods are scheduled to ensure all data transfers

occur over the network, with each function placed on a separate

EC2 node. All experiments emulate a stable serverless work�ow

with no cold starts.

5.0.2 Measurement. Unless speci�ed otherwise, we report average

end-to-end latency based on 10 measurements. For microbench-

marks, which do not have any computational overheads except

network processing, we calculate e�ective bandwidth by dividing

the transferred object size by the measured end-to-end latency.

5.0.3 Baseline and ZL Configurations. Our baseline employs two

storage options for through-storage communication, represent-

ing the performance and cost extremes of multi-tier ephemeral

storage [32, 42, 50, 51, 56]. The �rst is AWS S3, the most econom-

ical but slowest option. The second is ElastiCache (EC), a high-

performance in-memory store, priced over 100× more than S3. We

use EC in on-demand mode, which is four times cheaper than

its serverless mode [11]. Prior studies [31, 32] highlight EC’s su-

perior performance for inter-function communication at a pre-

mium cost. For EC, we con�gure a single-node Redis cache of type

cache.m6g.16xlarge with 64 vCPUs and a 25 Gb/s NIC, costing

$4.7 per hour.

5.0.4 Microbenchmarks. We implementmicrobenchmarks inGolang

to evaluate common serverless data transfer patterns (§3.2.1): producer-

consumer (1-1), scatter, gather, and broadcast. Each pattern involves

varying numbers of producer and consumer function instances,

transferring one or more objects between them. Hereafter, a pro-

ducer (consumer) refers to a producer (consumer) function instance.

5.0.5 Real-World Workloads. We use three data-intensive applica-

tions from the vSwarm suite [5]. Each workload consists of multiple

functions deployed with Knative Serving [4], using a blocking inter-

face for inter-function communication. We modify the workloads

to support ZL alongside S3 and ElastiCache (EC) baselines using the

same communication API: invoke(), get(), and put() (§3.2.1).

The workloads demonstrate various communication patterns.

Video Analytics (VID) involves 1-1 and scatter patterns with func-

tions for video streaming, frame decoding, and object recognition.

The frame decoder invokes the object recognition function for sev-

eral frames in a scatter pattern. Stacking Ensemble Training (SET) is

a distributed ML training application utilizing broadcast and gather

patterns. The initial function broadcasts the training dataset to

parallel training tasks, and the �nal function gathers and reconciles

the trained models. MapReduce (MR) implements the Aggregation

Query from the AMPLab Big Data Benchmark [48], with the gather

pattern being crucial during the data-intensive shu�ing phase be-

tween mapper and reducer functions.

5.0.6 Cost Model. We estimate the cost of executing the studied

applications from the developer’s perspective using AWS pricing

models [11–13]. The cost of a function invocation includes a �xed
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(a) Latency CDFs for 10KB obj.(b) Latency CDFs for 10MB obj.

Figure 6: Transfer latency CDFs for S3, ElastiCache (EC) and

ZL in the 1-1work�ow. Note the log scale on the latency axis.

fee, a fee based on the processing time and maximum memory

footprint (assumed to be 512MB), and storage costs for data trans-

fer. Storage costs are calculated on a GB/month basis for AWS S3 [12]

and GB/hour for on-demand AWS EC [11]. We assume ephemeral

storage de-allocates data immediately after the last retrieval, al-

though in practice, services like AWS S3 do not support expiration

times below one day as of 2024.

6 Evaluation

We compare Zipline (ZL) to through-storage transfers based on

AWS S3 and ElastiCache (EC). We �rst study the performance of

the communication mechanisms on microbenchmarks featuring

1-1, gather, scatter, and broadcast patterns. We then assess the

performance and cost of real-world serverless applications in cloud.

6.1 Microbenchmarks

6.1.1 Producer-Consumer Communication. We focus on the 1-1

(producer-consumer) pattern to study the latency characteristics of

the communication methods.

Fig. 6 shows the median and 99th percentile latencies for S3,

EC, and ZL transfers for 10KB and 10MB objects. For 10KB objects,

EC o�ers signi�cantly lower latency than S3, with median and

tail latencies reduced by 89% and 92%, respectively. ZL further

improves on EC, reducing median and tail latencies by 12% and 10%.

For 10MB objects, EC reduces median and tail latencies by 87% and

90% compared to S3, while ZL achieves 45% and 34% lower latencies

than EC. ZL’s advantage comes from avoiding intermediate writes

and reads, which are more pronounced with larger objects.

6.1.2 Collective Communication. We evaluate the latency and ef-

fective bandwidth4 of collective communication patterns (gather,

scatter, broadcast) for fan-in and fan-out degrees of 4 and 16, using

10KB and 10MB transfer sizes.

Fig. 7a shows results for 10KB transfers. EC outperforms S3, with

9.2-11.0× lower latency at a fan degree of 4 and 7.8-10.8× lower at a

fan degree of 16. ZL matches or exceeds EC, achieving up to 1.16×

lower latency.

For 10MB transfers (Fig. 7b), EC maintains its advantage over S3

with up to 7.7× lower latency. ZL further improves on EC, delivering

1.2-1.9× lower latency. ZL also achieves higher e�ective bandwidth.

For 10MB transfers with a fan degree of 32, ZL reaches 16.4Gb/s

4The latency and bandwidth metrics are calculated as the size of the transferred objects
divided by the end- to-end transfer time.

(a) 10KB object transfers

(b) 10MB object transfers

Figure 7: Transfer latency of the scatter, gather, and broadcast

patterns with the fan degrees of 4 and 16. Note that both

sub�gures use a log scale for latency, but the scales di�er.

S3 ElastiCache(EC) ZL

App Comp. Stor. Total Comp. Stor. Total Total (comp.)

VID 37 18 55 14 913 928 17

SET 95 30 125 69 1104 1172 70

MR 180 416 595 125 99667 99792 129

Table 2: Cost estimation (in *(� × 10
−6) for compute and

storage spending when executing a single invocation for S3,

EC, and ZL based con�gurations based on AWS Lambda [13],

AWS S3 [12], and AWS EC [11] prices as of 1/1/2023.

(82% of NIC peak bandwidth), compared to EC’s 14.0Gb/s (70%) and

S3’s 5.5Gb/s (28%).

6.2 Real-World Workloads

Next, we study three data-intensive applications (§5.0.5), presenting

their end-to-end latency along with a detailed breakdown (Fig. 8)

and estimating the associated cost (Table 2) of executing a request.

6.2.1 Performance Analysis.

Video Analytics (VID). The workload spends 39% and 5% of its

execution time transferring the video fragment and the frames

in the S3-based and EC-based con�gurations, respectively. With

ZL, this fraction decreases to 4%, reducing the overall processing

time by 36% and 2% vs. the S3 and EC baselines, respectively. This

speedup comes from 9.5× and 1.2× faster transmission of video and

frames, respectively.

Stacking Ensemble Training (SET). SET spends 76% and 14% of

execution time in communication in the S3-based and EC-based

con�guration, respectively. The largest fraction of data communica-

tion is the gather trained models latency component, accounting for
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(a) Video Analytics

(b) Stacking Ensemble Training

(c) MapReduce

Figure 8: Latency breakdown of real-world workloads, de-

ployed in Zipline, ElastiCache (EC) and S3 based systems.

34% and 4% of the overall execution time in the S3-based and EC-

based con�gurations, respectively. Using ZL decreases the gather

fraction to 3% of the end-to-end latency, driving the communication

fraction down to 12%. Thus, ZL delivers a 3.4× speedup over the S3

baseline and 1.05× vs. EC.

MapReduce (MR). The workload shows 70% and 62% of execution

time spent in communication for the S3 and EC con�gurations

respectively. Moreover, 40% of the overall time in S3 baseline is

spent retrieving the original input from S3 and writing back the

results to S3, which we do not optimize with ZL. The rest, i.e., 30%

of time, are subject to ZL optimization. ZL delivers 1.26× overall

speedup over the S3 baseline and 1.05× over EC. ZL’s speedup is

due to a signi�cant decrease in data shu�ing, namely mapper-put

and the reducer-get phases, which are reduced by 23.4× and 4.8×,

respectively, compared to the S3 baseline, and by 30% and 55%,

respectively, compared to EC.

6.2.2 Cost Analysis.

A single invocation processed in a ZL-enabled system lowers the

cost by 2-5× and 56×, compared to S3 based con�gurations. With

EC, the cost reduction is 56× in the case of VID, 17× for SET, and

772× for MR. This large cost reduction associated with MR is due to

the large amount of ephemeral data transferred during the shu�e

phase, making through-storage transfers particularly expensive.

7 Related Work

Prior works [32, 42, 50, 51, 56] explore ephemeral storage services

for high-performance transfers at reasonable costs. However, as

shown in §2.3, even the cheapest tier (e.g., AWS S3) can signi�cantly

impact the overall cost of data-intensive serverless applications.

Other studies [22, 30, 45, 51, 54, 55, 61] propose extending serverless

with a distributed shared memory tier to pass references instead of

data objects. Unlike these, Zipline transmits immutable data objects,

simplifying data consistency. YuanRong [21], a Huawei system, also

passes data by references but lacks implementation details.

Other works [47, 57, 62, 63] explore connection-based communi-

cation for serverless applications, aiding in porting microservices

and monoliths but di�cult to apopt in serverless-native applica-

tions [23, 51] as these optimizations con�ict with the core serverless

principle of transparent autoscaling by the cloud provider, as they

require recon�guring work�ow topology when scaling instances. In

contrast, Zipline uses an object-centric get()/put() API, ensuring

compatibility with existing cloud autoscaling infrastructure.

Similar to Zipline, prior works propose separating control and

data planes to avoid bottlenecks and enhance performance. Crab [33]

and Prism [27] reduce load on L4 and L7 load balancers, respec-

tively. Data�ower [38] and FUYAO [39] use asynchronous transfers

to decouple data from the control plane. FractOS [60] uses RPCs to

orchestrate distributed OS-level operations across disaggregated

datacenter hardware, associating references (capabilities) with each

call. RMMAP [40] utilizes RDMA to expose remote memory to the

receiving function to support serialization-free data transfers.

Zipline achieves high-performance transfers without relying on

function instance co-location or data locality, distinguishing it from

prior works. SAND [10] uses a hierarchical messaging bus for co-

located function communication. FaaSFlow [37], Sledge [41], and

Wukong [20] leverage locality for faster serverless multi-function

execution. Faastlane [35] adopts a similar approach to execute func-

tions in the same container as lightweight threads, isolating them

using Intel MPK. [8] Nightcore [28] exchanges messages via OS

pipes for co-located functions. However, commercial systems like

AWS Lambda avoid function co-location to prevent hotspots [9, 18],

favoring statistical multiplexing across a large server �eet.

8 Conclusion

The cost and performance of data-intensive serverless applications

depend on e�cient inter-function data transfers. Current methods

fall short of these demands. We introduce Zipline (ZL), a high-speed,

API-preserving direct function-to-function communication method

that integrates with existing autoscaling infrastructure. ZL uses

control/data separation and references to provide low latency and

high bandwidth. A prototype ZL reduces the cost of end-to-end

applications by 2-5× and accelerates real-world serverless applica-

tions by 1.3-3.4×. Compared to through-cache transfers, ZL cuts

costs by 17-772× while achieving speedups of 2-5%.
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